1.平面的基本性質(zhì)與推論 借助長方體模型.在直觀認(rèn)識和理解空間點.線.面的位置關(guān)系的基礎(chǔ)上.抽象出空間線.面位置關(guān)系的定義.并了解如下可以作為推理依據(jù)的公理和定理: ◆公理1:如果一條直線上的兩點在一個平面內(nèi).那么這條直線在此平面內(nèi), ◆公理2:過不在一條直線上的三點.有且只有一個平面, ◆公理3:如果兩個不重合的平面有一個公共點.那么它們有且只有一條過該點的公共直線, ◆公理4:平行于同一條直線的兩條直線平行, ◆定理:空間中如果兩個角的兩條邊分別對應(yīng)平行.那么這兩個角相等或互補. 查看更多

 

題目列表(包括答案和解析)

下列命題中,正確命題的個數(shù)為(  )

①平面的基本性質(zhì)1可用集合符號敘述為:若Al,Bl,且AαBα,則必有lα;

②四邊形的兩條對角線必相交于一點;

③用平行四邊形表示的平面,以平行四邊形的四條邊作為平面的邊界線;

④平行四邊形是平面圖形.

A.1個                  B.2個         C.3個                  D.4個

查看答案和解析>>

已知離心率為
3
2
的橢圓C1的頂點A1,A2恰好是雙曲線
x2
3
-y2=1
的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設(shè)直線PA1,PA2的斜率分別為k1,k2
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷k1•k2的值是否與點P的位置有關(guān),并證明你的結(jié)論;
(Ⅲ)當(dāng)k1=
1
2
時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為
4
5
5
,求實數(shù)m的值.
設(shè)計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識,考察學(xué)生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

查看答案和解析>>

已知離心率為的橢圓C1的頂點A1,A2恰好是雙曲線的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設(shè)直線PA1,PA2的斜率分別為k1,k2
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷k1•k2的值是否與點P的位置有關(guān),并證明你的結(jié)論;
(Ⅲ)當(dāng)時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為,求實數(shù)m的值.
設(shè)計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識,考察學(xué)生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

查看答案和解析>>

已知離心率為的橢圓C1的頂點A1,A2恰好是雙曲線的左右焦點,點P是橢圓上不同于A1,A2的任意一點,設(shè)直線PA1,PA2的斜率分別為k1,k2
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷k1•k2的值是否與點P的位置有關(guān),并證明你的結(jié)論;
(Ⅲ)當(dāng)時,圓C2:x2+y2-2mx=0被直線PA2截得弦長為,求實數(shù)m的值.
設(shè)計意圖:考察直線上兩點的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識,考察學(xué)生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

查看答案和解析>>

 [番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。

若實數(shù)、、滿足,則稱遠(yuǎn)離.

(1)若比1遠(yuǎn)離0,求的取值范圍;

(2)對任意兩個不相等的正數(shù)、,證明:遠(yuǎn)離;

(3)已知函數(shù)的定義域.任取,等于中遠(yuǎn)離0的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知橢圓的方程為,點P的坐標(biāo)為(-a,b).

(1)若直角坐標(biāo)平面上的點M、A(0,-b),B(a,0)滿足,求點的坐標(biāo);

(2)設(shè)直線交橢圓兩點,交直線于點.若,證明:的中點;

(3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點、滿足,寫出求作點、的步驟,并求出使、存在的θ的取值范圍.

 

 

 

 


 [番茄花園1]22.

查看答案和解析>>


同步練習(xí)冊答案