(理)過橢圓的左頂點A的斜率為k的直線交橢圓C于另一個點B.且點B在x軸上的射影恰好為右焦點F.若則橢圓離心率的取值范圍是 A. B. C. D. (文)已知是以為焦點的橢圓上的一點.若..則此橢圓的的離心率為 A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負(fù)半軸于點Q,且2
F1F2
+
F2Q
=
0
,|F1F2|=2.
(1)求橢圓C的方程;
(2)過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

設(shè)橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負(fù)半軸于點Q,且。
(1)求橢圓C的離心率;
(2)若過A,Q,F(xiàn)2三點的圓恰好與直線l:相切,求橢圓C的方程;
(3)在(2)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M,N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由。

查看答案和解析>>

設(shè)橢圓C:的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負(fù)半軸于點Q,且
(1)求橢圓C的離心率;
(2)若過A、Q、F2三點的圓恰好與直線l:相切,求橢圓C的方程;
(3)在(2)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.


查看答案和解析>>

設(shè)橢圓C:的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負(fù)半軸于點Q,且
(1)求橢圓C的離心率;
(2)若過A、Q、F2三點的圓恰好與直線l:相切,求橢圓C的方程;
(3)在(2)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.


查看答案和解析>>

設(shè)橢圓C:的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負(fù)半軸于點Q,且
(1)求橢圓C的離心率;
(2)若過A、Q、F2三點的圓恰好與直線l:相切,求橢圓C的方程;
(3)在(2)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.


查看答案和解析>>


同步練習(xí)冊答案