12.在計(jì)算機(jī)算法語言中有一種函數(shù)叫做取整函數(shù). 是不超過 的最大整數(shù).例如:.設(shè)函數(shù),則函數(shù)的值域?yàn)? dyr232 第Ⅱ卷 本卷分必考題和選考題兩部分.第13題-第21題為必考題.每個(gè)試題考生都必須做答.第22題-第24題為選考題.考生根據(jù)要求做答. 查看更多

 

題目列表(包括答案和解析)

 在計(jì)算機(jī)算法語言中有一種函數(shù)叫做取整函數(shù), 是不超過 的最大整數(shù).

例如:.設(shè)函數(shù),則函數(shù) 的值域?yàn)?nbsp;            (     )

    A.              B.              C.           D.

 

查看答案和解析>>

在計(jì)算機(jī)的算法語言中有一種函數(shù)[x]叫做取整函數(shù)(也稱高斯函數(shù)),它表示x的整數(shù)部分,即[x]是不超過x的最大整數(shù).例如:[2]=2,[3.1]=3,[-2.6]=-3.設(shè)函數(shù)f(x)=
2x
1+2x
-
1
2
,則函數(shù)y=[f(x)]+[f(-x)]的值域?yàn)?!--BA-->
 

查看答案和解析>>

在計(jì)算機(jī)的算法語言中有一種函數(shù)[x]叫做高斯函數(shù),它表示數(shù)x的整數(shù)部分(即小于等于x的最大整數(shù),如[3.15]=3,[0.7]=0,[-2.6]=-3)設(shè)函數(shù)f(x)=
ax
1+ax
(a>0,且a≠1)
,則函數(shù)y=[f(x)-
1
2
]+[f(-x)-
1
2
]
的值域?yàn)椋ā 。?/div>
A、{-1,0}
B、{0}
C、{-1}
D、{-1,0,1}

查看答案和解析>>

在計(jì)算機(jī)的算法語言中有一種函數(shù)[x]叫做取整函數(shù)(也稱高斯函數(shù)),它表示不超過x的最大整數(shù),例如:[2]=2,[3.1]=3,[-2.6]=-3,設(shè)函數(shù)f(x)=
2x
1+2x
-
1
2
,則函數(shù)y=[f(x)]+[f(-x)]的值域?yàn)椋ā 。?/div>

查看答案和解析>>

在計(jì)算機(jī)的算法語言中有一種函數(shù)[x]叫做取整函數(shù)(也稱高斯函數(shù)),表示不超過x的最大整數(shù),例如[2]=2,[3.3]=3,[-2.4]=-3,設(shè)函數(shù)f(x)=
2x
1+2x
-
1
2
,則函數(shù)y=[f(x)]+[f(-x)]的值域?yàn)?!--BA-->
{0,-1}
{0,-1}

查看答案和解析>>

 

一、選擇題.(單項(xiàng)選擇,5×12=60分.答案涂在答題卡上的相應(yīng)位置.)

1.C  2. A  3. B  4. B  5. B  6. B  7. A  8. C  9.D  10. B  11.D  12. B

二、填空題.( 5×4=20分,答案寫在答題紙的相應(yīng)空格內(nèi).)

<fieldset id="f7lug"><optgroup id="f7lug"></optgroup></fieldset>

    • dyr232

      三、解答題.(12×5+10=70分,答案寫在答題紙的答題區(qū)內(nèi).)

      17.(Ⅰ)∵ m?n                                                     ……… 2分

      ,解得                                              ……… 6分

      (Ⅱ)           ……… 8分

      ,∴                                          ………10分

      的值域?yàn)閇]                                                       ………12分

       

      18.(Ⅰ)把一根長度為8的鐵絲截成3段,且三段的長度均為整數(shù),共有21種解法.

      (可視為8個(gè)相同的小球放入3個(gè)不同盒子,有種方法)   …   3分

      其中能構(gòu)成三角形的情況有3種情況:“2,3,3”、“3,2,3”、“3,3,2”

      則所求的概率是                                                         ……… 6分

      (Ⅱ)根據(jù)題意知隨機(jī)變量                                               ……… 8分

                    ……12分

      19.(Ⅰ)∵點(diǎn)A、D分別是、的中點(diǎn),∴. …… 2分

      ∴∠=90º.∴.∴ ,                                                   

      ,∴⊥平面.                       ……… 4分

      平面,∴.                                                ……… 5分

      (Ⅱ)建立如圖所示的空間直角坐標(biāo)系

      (-1,0,0),(-2,1,0),(0,0,1).

      =(-1,1,0),=(1,0,1),  …6分

      設(shè)平面的法向量為=(x,y,z),則:

      ,                                                     ……… 8分

      ,得,∴=(1,1,-1)

      顯然,是平面的一個(gè)法向量,=().       ………10分

      ∴cos<,>=. 

      ∴二面角的平面角的余弦值是.                    ………12分

       

      20.(Ⅰ)                                                                       ……… 4分

      (Ⅱ)由橢圓的對稱性知:PRQS為菱形,原點(diǎn)O到各邊距離相等………            5分

      ⑴當(dāng)P在y軸上時(shí),易知R在x軸上,此時(shí)PR方程為,

      .                                                       ……… 6分

      ⑵當(dāng)P在x軸上時(shí),易知R在y軸上,此時(shí)PR方程為,

      .                                                       ……… 7分

      ⑶當(dāng)P不在坐標(biāo)軸上時(shí),設(shè)PQ斜率為k,、

      P在橢圓上,.......①;R在橢圓上,....

      ②利用Rt△POR可得            ……… 9分

      即 

      整理得 .                                               ………11分

      再將①②帶入,得

      綜上當(dāng)時(shí),有.                ………12分

       

      21.(Ⅰ)時(shí),單調(diào)遞減,

      當(dāng)單調(diào)遞增。

      ①若無解;

      ②若

      ③若時(shí),上單調(diào)遞增,

      ;

      所以                                               ……… 4分

      (Ⅱ)

      設(shè)時(shí),

      單調(diào)遞減,單調(diào)遞增,

      所以因?yàn)閷σ磺?sub>

      恒成立,所以;                                             ……… 8分

      (Ⅲ)問題等價(jià)于證明

      由(Ⅰ)可知

      當(dāng)且僅當(dāng)時(shí)取到,設(shè)

      ,當(dāng)且僅當(dāng)時(shí)取到,

      從而對一切成立.                ………12分

       

      22.(Ⅰ)連接OC,∵OA=OB,CA=CB  ∴OC⊥AB∴AB是⊙O的切線         … 5分

      (Ⅱ)∵ED是直徑,∴∠ECD=90°∴∠E+∠EDC=90°

      又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E

      又∵∠CBD+∠EBC,∴△BCD∽△BEC       ∴  ∴BC2=BD•BE

      ∵tan∠CED=,∴∵△BCD∽△BEC, ∴

      設(shè)BD=x,則BC=2      又BC2=BD•BE,∴(2x)2=x•(x+6)

      解得x1=0,x2=2, ∵BD>0, ∴BD=2∴OA=OB=BD+OD=3+2=5    … 10分

       

      23.(Ⅰ)                                                             …  5分

      (Ⅱ)                                                                  … 10分

       

      23.(Ⅰ),                                                                              …  5分

      (Ⅱ)

                                 … 10分

       

       


      同步練習(xí)冊答案