2.向量的線性運(yùn)算 (1) 掌握向量加法.減法的運(yùn)算.并理解其幾何意義. (2) 掌握向量數(shù)乘的運(yùn)算及其幾何意義.理解兩個(gè)向量共線的含義. (3) 了解向量線性運(yùn)算的性質(zhì)及其幾何意義. 查看更多

 

題目列表(包括答案和解析)

材料:采訪零向量

  W:你好!零向量.我是《數(shù)學(xué)天地》的一名記者,為了讓在校的高中生更好了解你,能不能對(duì)你進(jìn)行一次采訪呢?

  零向量:當(dāng)然可以,我們向量王國(guó)隨時(shí)恭候大家的光臨,很樂(lè)意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務(wù).

  W:好的,那就開(kāi)始吧!你的名字有什么特殊的含義嗎?

  零向量:零向量就是長(zhǎng)度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來(lái)表示我.

  W:你與其他向量有什么共同之處呢?

  零向量:既然我是向量王國(guó)的一個(gè)成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進(jìn)行加、減法運(yùn)算時(shí)滿足交換律和結(jié)合律,還定義了與實(shí)數(shù)的積.

  W:你有哪些值得驕傲的特殊榮耀呢?

  零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒(méi)有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運(yùn)算中,我與實(shí)數(shù)0很有相似之處.

  W:你有如此多的榮耀,那么是否還有煩惱之事呢?

  零向量:當(dāng)然有了,在向量王國(guó)還有許多“權(quán)利和義務(wù)”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對(duì)我進(jìn)行了限制.所有這些確實(shí)給一些高中生帶來(lái)了很多苦惱,在此我向大家真誠(chéng)地說(shuō)一聲:對(duì)不起,這不是我的錯(cuò).但我還是很高興有這次機(jī)會(huì)與大家見(jiàn)面.

  W:OK!采訪就到這里吧,非常感謝你的合作,再見(jiàn)!

  零向量:Bye!

閱讀上面的材料回答下面問(wèn)題.

應(yīng)用零向量時(shí)應(yīng)注意哪些問(wèn)題?

查看答案和解析>>

(中線性運(yùn)算)在平面直角坐標(biāo)系中,若O為坐標(biāo)原點(diǎn),則A、B、C三點(diǎn)在同一直線上的充要條件為存在唯一的實(shí)數(shù)λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此時(shí)稱實(shí)數(shù)λ為“向量
OC
關(guān)于
OA
OB
的終點(diǎn)共線分解系數(shù)”.若已知P1(3,1)、P2(-1,3),且向量
OP3
與向量
a
=(1,1)垂直,則“向量
OP3
關(guān)于
OP1
OP2
的終點(diǎn)共線分解系數(shù)”為( 。
A、-3B、3C、1D、-1

查看答案和解析>>

(中線性運(yùn)算)在平面直角坐標(biāo)系中,若O為坐標(biāo)原點(diǎn),則A、B、C三點(diǎn)在同一直線上的充要條件為存在唯一的實(shí)數(shù)λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此時(shí)稱實(shí)數(shù)λ為“向量
OC
關(guān)于
OA
OB
的終點(diǎn)共線分解系數(shù)”.若已知P1(3,1)、P2(-1,3),且向量
OP3
與向量a=(1,1)垂直,則“向量
OP3
關(guān)于
OP1
OP2
的終點(diǎn)共線分解系數(shù)”為( 。
A.-3B.3C.1D.-1

查看答案和解析>>


同步練習(xí)冊(cè)答案