數(shù)學(xué)學(xué)習(xí)總是如數(shù)學(xué)知識(shí)自身的生長歷史一樣,往往起源于猜測中的發(fā)現(xiàn),我們所發(fā)現(xiàn)的不一定對(duì),但是當(dāng)利用我們已有的知識(shí)作為推理的前提論證之后,當(dāng)所發(fā)現(xiàn)的在邏輯上沒有矛盾之后,就可以作為新的推理的前提,數(shù)學(xué)中稱之為定理.
(1)嘗試證明:
等腰三角形的探索中借助折紙發(fā)現(xiàn):直角三角形斜邊上的中線等于斜邊的一半.但是當(dāng)時(shí)并未說明這個(gè)結(jié)論的合理.現(xiàn)在我們學(xué)些了矩形的判定和性質(zhì)之后,就可以解決這個(gè)問題了.如圖1若在Rt△ABC中CD是斜邊AB的中線,則
CD=AB,你能用矩形的性質(zhì)說明這個(gè)結(jié)論嗎?請(qǐng)說明.
(2)遷移運(yùn)用:利用上述結(jié)論解決下列問題:
①如圖2所示,四邊形ABCD中,∠BAD=90°,∠DCB=90°,EF分別是BD、AC的中點(diǎn),請(qǐng)你說明EF與AC的位置關(guān)系.
②如圖3所示,?ABCD中,以AC為斜邊作Rt△ACE,∠AEC=90°,且∠BED=90°,試說明平行四邊形ABCD是矩形.