結(jié)論探索型--給定條件.但無(wú)明確結(jié)論或結(jié)論不惟一. 查看更多

 

題目列表(包括答案和解析)

如圖1,正方形ABCD是邊長(zhǎng)為1的正方形,正方形EFGH的邊HE、HG與正方形ABCD的邊AB、BC交于點(diǎn)M、N,頂點(diǎn)H在對(duì)角線BD上移動(dòng),設(shè)點(diǎn)M、N到BD的距離分別是hM、hN,四邊形MBNH的面積是S.
(1)當(dāng)頂點(diǎn)H和正方形ABCD的中心O重合時(shí)(圖1),S=
1
4
1
4
,hM+hN=
2
2
2
2
(只要求寫(xiě)出結(jié)果,不用證明);
(2)若頂點(diǎn)H為OB的中點(diǎn)(圖2),S=
1
16
1
16
,hM+hN=
2
4
2
4
 (只要求寫(xiě)出結(jié)果,不用證明);
(3)按要求完成下列問(wèn)題:
我們準(zhǔn)備探索:當(dāng)BH=n時(shí),S=
1
2
n2
1
2
n2
,hM+hN=
n
n

①簡(jiǎn)要寫(xiě)出你的探索過(guò)程;②在上面的橫線上填上你的結(jié)論;③證明你得到的結(jié)論.

查看答案和解析>>

22、某商場(chǎng)購(gòu)進(jìn)一批單價(jià)為5元的日用商品.如果以單價(jià)7元銷(xiāo)售,每天可售出160件.根據(jù)銷(xiāo)售經(jīng)驗(yàn),提高銷(xiāo)售單價(jià)會(huì)導(dǎo)致銷(xiāo)售量的減少,即銷(xiāo)售單價(jià)每提高1元,銷(xiāo)售量每天就相應(yīng)減少20件.設(shè)這種商品的銷(xiāo)售單價(jià)為x元,商品每天銷(xiāo)售這種商品所獲得的利潤(rùn)為y元.
(1)給定x的一些值,請(qǐng)計(jì)算y的一些值;

(2)求y與x之間的函數(shù)關(guān)系式,并探索:當(dāng)商品的銷(xiāo)售單價(jià)定為多少元時(shí),該商店銷(xiāo)售這種商品獲得的利潤(rùn)最大?這時(shí)每天銷(xiāo)售的商品是多少件?

查看答案和解析>>

如圖,已知點(diǎn)B、C分別在∠A的兩邊上,連結(jié)BC,點(diǎn)P在∠A的內(nèi)部,連結(jié)PB、PC.試探索∠BPC與∠A、∠ABP、∠ACP之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

(2012•延慶縣一模)如圖1,已知:已知:等邊△ABC,點(diǎn)D是邊BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合),求證:BD+DC>AD.
下面的證法供你參考:
把△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△ABE,連接ED,則有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等邊三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
實(shí)踐探索:
(1)請(qǐng)你仿照上面的思路,探索解決下面的問(wèn)題:
如圖3,點(diǎn)D是等腰直角三角形△ABC邊上的點(diǎn)(點(diǎn)D不與B、C重合).求證:BD+DC>
2
AD.
(2)如果點(diǎn)D運(yùn)動(dòng)到等腰直角三角形△ABC外或內(nèi)時(shí),BD、DC和AD之間又存在怎樣的數(shù)量關(guān)系?直接寫(xiě)出結(jié)論.
創(chuàng)新應(yīng)用:
(3)已知:如圖4,等腰△ABC中,AB=AC,且∠BAC=α(α為鈍角),D是等腰△ABC外一點(diǎn),且∠BDC+∠BAC=180°,BD、DC與AD之間存在怎樣的數(shù)量關(guān)系?寫(xiě)出你的猜想,并證明.

查看答案和解析>>

精英家教網(wǎng)在平面直角坐標(biāo)系中給定以下五個(gè)點(diǎn)A(-3,0),B(-1,4),C(0,3),D(
1
2
,
7
4
),E(1,0).
(1)請(qǐng)從五點(diǎn)中任選三點(diǎn),求一條以平行于y軸的直線為對(duì)稱(chēng)軸的拋物線的解析式;
(2)求該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸,并畫(huà)出草圖;
(3)已知點(diǎn)F(-1,
15
4
)在拋物線的對(duì)稱(chēng)軸上,直線y=
17
4
過(guò)點(diǎn)G(-1,
17
4
)且垂直于對(duì)稱(chēng)軸.驗(yàn)證:以E(1,0)為圓心,EF為半徑的圓與直線y=
17
4
相切.請(qǐng)你進(jìn)一步驗(yàn)證,以拋物線上的點(diǎn)D(
1
2
,
7
4
)為圓心DF為半徑的圓也與直線y=
17
4
相切.由此你能猜想到怎樣的結(jié)論.

查看答案和解析>>


同步練習(xí)冊(cè)答案