利用均值不等式: 值? 注意如下結(jié)論: 查看更多

 

題目列表(包括答案和解析)

(1)若,,求證:;

(2)已知,且, 求證:中至少有一個(gè)小于2.

【解析】第一問利用均值不等式,可知

第二問中,

證明:(1)

(2)

 

查看答案和解析>>

已知 求證:

【解析】本試題組要是利用均值不等式配湊法,來證明關(guān)于不等式的證明問題。也可以運(yùn)用分析法得到。

 

查看答案和解析>>

如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花園AMPN,要求B在AM上,D在AN上,且對(duì)角線MN過C點(diǎn),|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面積大于32平方米,則AN的長(zhǎng)應(yīng)在什么范圍內(nèi)?

(II)當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最小?并求出最小面積.

(Ⅲ)若AN的長(zhǎng)度不少于6米,則當(dāng)AN的長(zhǎng)度是多少時(shí),矩形AMPN的面積最?并求出最小面積.

【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN長(zhǎng)的取值范圍是(2,8/3)或(8,+)

第二問,  

當(dāng)且僅當(dāng)

(3)令

∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

∴當(dāng)x=6時(shí)y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

已知數(shù)列的前項(xiàng)的和為,是等比數(shù)列,且,。

⑴求數(shù)列的通項(xiàng)公式;

⑵設(shè),求數(shù)列的前項(xiàng)的和。

⑴   ,數(shù)列的前項(xiàng)的和為,求證:

【解析】第一問利用數(shù)列

依題意有:當(dāng)n=1時(shí),;

當(dāng)時(shí),

第二問中,利用由得:,然后借助于錯(cuò)位相減法

第三問中

結(jié)合均值不等式放縮得到證明。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案