題目列表(包括答案和解析)
已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R都有f(x+2)=f(x).當(dāng)0≤x≤1時,f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖像在[0,2]內(nèi)恰有兩個不同的公共點,則實數(shù)a的值是( )
A.0 B.0或- C.-或- D.0或-
已知函數(shù),,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖像在其與兩坐標(biāo)軸的交點處的切線相互平行.若關(guān)于x的不等式對任意不等于1的正實數(shù)都成立,則實數(shù)m的取值集合是____________。
已知函數(shù),A、B是圖像上不同的兩點,若直線AB的斜率k總滿足,則實數(shù)a的值是 ( )
A. B. C.5 D.1
已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R都有f(x+2)=f(x).當(dāng)0≤x≤1時,f(x)=x2.若直線y=x+a與函數(shù)y=f(x)的圖像在[0,2]內(nèi)恰有兩個不同的公共點,則實數(shù)a的值是( )
A.0 | B.0或- | C.-或- | D.0或- |
已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1, 關(guān)于x的方程:
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com