1.,2.,3. 分析:按照求極值的基本方法.首先從方程求出在函數定義域內所有可能的極值點.然后按照函數極值的定義判斷在這些點處是否取得極值. 解:1.函數定義域為R. 令.得. 當或時.. ∴函數在和上是增函數, 當時.. ∴函數在上是減函數. ∴當時.函數有極大值. 當時.函數有極小值 查看更多

 

題目列表(包括答案和解析)

汕頭二中擬建一座長米,寬米的長方形體育館.按照建筑要求,每隔米(,為正常數)需打建一個樁位,每個樁位需花費萬元(樁位視為一點且打在長方形的邊上),樁位之間的米墻面需花萬元,在不計地板和天花板的情況下,當為何值時,所需總費用最少?

【解析】本試題主要考查了導數在研究函數中的運用。先求需打個樁位.再求解墻面所需費用為:,最后表示總費用,利用導數判定單調性,求解最值。

解:由題意可知,需打個樁位. …………………2分

墻面所需費用為:,……4分

∴所需總費用)…7分

,則 

時,;當時,

∴當時,取極小值為.而在內極值點唯一,所以.∴當時,(萬元),即每隔3米打建一個樁位時,所需總費用最小為1170萬元.

 

查看答案和解析>>


同步練習冊答案