已知雙曲線的右焦點(diǎn)為F.若過點(diǎn)F且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn).則此雙曲線離心率的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知雙曲線數(shù)學(xué)公式的右頂點(diǎn)為A(2,0),右焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)F,A到漸近線的距離之比為數(shù)學(xué)公式,過點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量數(shù)學(xué)公式垂直?如果存在,求k的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

已知雙曲線的右頂點(diǎn)為A(2,0),右焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)F,A到漸近線的距離之比為,過點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q.
(I)求雙曲線的方程及k的取值范圍;
(II)是否存在常數(shù)k,使得向量垂直?如果存在,求k的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

已知雙曲線的左頂點(diǎn)為A,右焦點(diǎn)為F,過點(diǎn)F作垂直于x軸的直線與雙曲線交于B、C兩點(diǎn),且AB⊥AC,|BC|=6.
(1)求雙曲線的方程;
(2)設(shè)過點(diǎn)F且不垂直于x軸的直線l與雙曲線分別交于點(diǎn)P、Q,請(qǐng)問:是否存在直線l,使△APQ構(gòu)成以A為直角頂點(diǎn)的等腰直角三角形?若存在,求出所有滿足條件的直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
8
+
y2
4
=1
有公共焦點(diǎn),且以拋物線y2=2x的準(zhǔn)線為雙曲線C的一條準(zhǔn)線.動(dòng)直線l過雙曲線C的右焦點(diǎn)F且與雙曲線的右支交于P、Q兩點(diǎn).
(1)求雙曲線C的方程;
(2)無論直線l繞點(diǎn)F怎樣轉(zhuǎn)動(dòng),在雙曲線C上是否總存在定點(diǎn)M,使MP⊥MQ恒成立?若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)經(jīng)過點(diǎn)P(4,
15
),且雙曲線C的漸近線與圓x2+(y-3)2=4相切.
(1)求雙曲線C的方程;
(2)設(shè)F(c,0)是雙曲線C的右焦點(diǎn),M(x0,y0)是雙曲線C的右支上的任意一點(diǎn),試判斷以MF為直徑的圓與以雙曲線實(shí)軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

一、選擇題

1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

7、B         8、B        9、C          10、B        11、B        12、A(C)

二、填空題

13、6          14、           15、31           16、

三、解答題

17、解:⑴由

       由 

        

       ∴函數(shù)的最小正周期T= …………………6分

       ⑵由

       ∴fx)的單調(diào)遞減區(qū)間是

       ⑶,∴奇函數(shù)的圖象左移 即得到的圖象,

故函數(shù)的圖象右移后對(duì)應(yīng)的函數(shù)成為奇函數(shù).…………………12分

18、(文)解:(1),又. ∴,.

(2)至少需要3秒鐘可同時(shí)到達(dá)點(diǎn).

到達(dá)點(diǎn)的概率. 到達(dá)點(diǎn)的概率.

     故所求的概率.

(理)解:(Ⅰ)的概率分布為

1.2

1.18

1.17

由題設(shè)得,即的概率分布為

0

1

2

的概率分布為

1.3

1.25

0.2

所以的數(shù)學(xué)期望

(Ⅱ)由

,∴

 

19、解:(1)取中點(diǎn),連結(jié),∵的中點(diǎn),的中點(diǎn).

  所以,所以………………………… 2分

平面,所以平面………………………………………… 4分

(2)分別在兩底面內(nèi)作,,連結(jié),易得,以為原點(diǎn),軸,軸,軸建立直角坐標(biāo)系,

設(shè),則……………………………………………………… 5分

  .

易求平面的法向量為…………………………………………… 7分

設(shè)平面的法向量為

,由…………… 9分

  ∴…………… 11分

由題知 ∴

所以在上存在點(diǎn),當(dāng)時(shí)是直二面角.…………… 12分

20、解:(1)由,得,兩式相減,得,∴,∵是常數(shù),且,故

為不為0的常數(shù),∴是等比數(shù)列.

(2)由,且時(shí),,得

,∴是以1為首項(xiàng),為公差的等差數(shù)列,

,故.

(3)由已知,∴

相減得:,∴,

,遞增,∴,對(duì)均成立,∴∴,又,∴最大值為7.

21、(文)解:(Ⅰ)因?yàn)?sub>

                      

             又  

             因此    

             解方程組得 

         (Ⅱ)因?yàn)?nbsp;    

             所以     

             令      

             因?yàn)?nbsp;   

                     

             所以     在(-2,0)和(1,+)上是單調(diào)遞增的;

                           在(-,-2)和(0,1)上是單調(diào)遞減的.

         (Ⅲ)由(Ⅰ)可知         

            

 

(理)(1)證:令,令時(shí)

            時(shí),.  ∴

             ∴ 即.

  (2)∵是R上的奇函數(shù)  ∴  ∴

       ∴  ∴  故.

       故討論方程的根的個(gè)數(shù).

       即的根的個(gè)數(shù).

       令.注意,方程根的個(gè)數(shù)即交點(diǎn)個(gè)數(shù).

        對(duì), ,

        令, 得,

         當(dāng)時(shí),; 當(dāng)時(shí),.  ∴,

         當(dāng)時(shí),;   當(dāng)時(shí),, 但此時(shí)

,此時(shí)以軸為漸近線。

       ①當(dāng)時(shí),方程無根;

②當(dāng)時(shí),方程只有一個(gè)根.

③當(dāng)時(shí),方程有兩個(gè)根.

 (3)由(1)知,   令,

      ∴,于是,

      ∴

         .

22、(文)22.解:(1)在中,

.  (小于的常數(shù))

故動(dòng)點(diǎn)的軌跡是以,為焦點(diǎn),實(shí)軸長(zhǎng)的雙曲線.方程為

(2)方法一:在中,設(shè),,

假設(shè)為等腰直角三角形,則

由②與③得:

由⑤得:,

故存在滿足題設(shè)條件.

方法二:(1)設(shè)為等腰直角三角形,依題設(shè)可得:

所以,

.①

,可設(shè)

,

.②

由①②得.③

根據(jù)雙曲線定義可得,

平方得:.④

由③④消去可解得,

故存在滿足題設(shè)條件.

 

 

 

 

(理)解:(1) ,

,

    于是,所求“果圓”方程為

    ,.                    

(2)由題意,得  ,即

         ,得.  

     又.  .                                             

(3)設(shè)“果圓”的方程為,

    記平行弦的斜率為

當(dāng)時(shí),直線與半橢圓的交點(diǎn)是

,與半橢圓的交點(diǎn)是

 的中點(diǎn)滿足  得 .  

     , 

    綜上所述,當(dāng)時(shí),“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上. 

    當(dāng)時(shí),以為斜率過的直線與半橢圓的交點(diǎn)是.  

由此,在直線右側(cè),以為斜率的平行弦的中點(diǎn)軌跡在直線上,即不在某一橢圓上.   當(dāng)時(shí),可類似討論得到平行弦中點(diǎn)軌跡不都在某一橢圓上.

 


同步練習(xí)冊(cè)答案