(2)若數(shù)列的公比滿足且.求的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

若 數(shù)列{an}前n項(xiàng)和為Sn(n∈N*)
(1)若首項(xiàng)a1=1,且對(duì)于任意的正整數(shù)n(n≥2)均有
Sn+k
Sn-k
=
an-k
an+k
,(其中k為正實(shí)常數(shù)),試求出數(shù)列{an}的通項(xiàng)公式.
(2)若數(shù)列{an}是等比數(shù)列,公比為q,首項(xiàng)為a1,k為給定的正實(shí)數(shù),滿足:
①a1>0,且0<q<1
②對(duì)任意的正整數(shù)n,均有Sn-k>0;
試求函數(shù)f(n)=
Sn+k
Sn-k
+k
an-k
an+k
的最大值(用a1和k表示)

查看答案和解析>>

(14分)若數(shù)列滿足,其中為常數(shù),則稱數(shù)列為等方差數(shù)列.已知等方差數(shù)列滿足成等比數(shù)列且互不相等.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)求數(shù)列的前項(xiàng)和;

    (Ⅲ)是否存在實(shí)數(shù),使得對(duì)一切正整數(shù),總有成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

若數(shù)列共有2k項(xiàng),,其中,該數(shù)列的前n項(xiàng)和為,且,其中常數(shù)a>1.

(1)求證:數(shù)列為等比數(shù)列;

(2)若,數(shù)列滿足,求數(shù)列的通項(xiàng)公式;

(3)對(duì)于(2)中的數(shù)列,設(shè),求出關(guān)于k的最簡(jiǎn)表達(dá)式,并求使的最大自然數(shù)k

查看答案和解析>>

數(shù)列的前項(xiàng)和為,若).

( I )求;

( II ) 是否存在等比數(shù)列滿足?若存在,則求出數(shù)列的通項(xiàng)公式;若不存在,則說(shuō)明理由.

查看答案和解析>>

若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對(duì)任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
(1)試問(wèn)等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L(zhǎng)型數(shù)列?若是,寫(xiě)出對(duì)應(yīng)p、q的值;若不是,說(shuō)明理由.
(2)已知L型數(shù)列{an}滿足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),證明:數(shù)列{an+1-2an}是等比數(shù)列,并進(jìn)一步求出{an}的通項(xiàng)公式an

查看答案和解析>>

一、選擇題

1、B(A)   2、C        3、A(C)       4、D         5、D          6、C(D)  

7、B         8、B        9、C          10、B        11、B        12、A(C)

二、填空題

13、6          14、           15、31           16、

三、解答題

17、解:⑴由

       由 

        

       ∴函數(shù)的最小正周期T= …………………6分

       ⑵由

       ∴fx)的單調(diào)遞減區(qū)間是

       ⑶,∴奇函數(shù)的圖象左移 即得到的圖象,

故函數(shù)的圖象右移后對(duì)應(yīng)的函數(shù)成為奇函數(shù).…………………12分

18、(文)解:(1),又. ∴.

(2)至少需要3秒鐘可同時(shí)到達(dá)點(diǎn).

到達(dá)點(diǎn)的概率. 到達(dá)點(diǎn)的概率.

     故所求的概率.

(理)解:(Ⅰ)的概率分布為

1.2

1.18

1.17

由題設(shè)得,即的概率分布為

0

1

2

的概率分布為

1.3

1.25

0.2

所以的數(shù)學(xué)期望

(Ⅱ)由

,∴

 

19、解:(1)取中點(diǎn),連結(jié),∵的中點(diǎn),的中點(diǎn).

  所以,所以………………………… 2分

平面,所以平面………………………………………… 4分

(2)分別在兩底面內(nèi)作,,連結(jié),易得,以為原點(diǎn),軸,軸,軸建立直角坐標(biāo)系,

設(shè),則……………………………………………………… 5分

  .

易求平面的法向量為…………………………………………… 7分

設(shè)平面的法向量為

,由…………… 9分

  ∴…………… 11分

由題知 ∴

所以在上存在點(diǎn),當(dāng)時(shí)是直二面角.…………… 12分

20、解:(1)由,得,兩式相減,得,∴,∵是常數(shù),且,故

為不為0的常數(shù),∴是等比數(shù)列.

(2)由,且時(shí),,得

,∴是以1為首項(xiàng),為公差的等差數(shù)列,

,故.

(3)由已知,∴

相減得:,∴,

遞增,∴對(duì)均成立,∴∴,又,∴最大值為7.

21、(文)解:(Ⅰ)因?yàn)?sub>

                      

             又  

             因此    

             解方程組得 

         (Ⅱ)因?yàn)?nbsp;    

             所以     

             令      

             因?yàn)?nbsp;   

                     

             所以     在(-2,0)和(1,+)上是單調(diào)遞增的;

                           在(-,-2)和(0,1)上是單調(diào)遞減的.

         (Ⅲ)由(Ⅰ)可知         

            

 

(理)(1)證:令,令時(shí)

            時(shí),.  ∴

             ∴ 即.

  (2)∵是R上的奇函數(shù)  ∴  ∴

       ∴  ∴  故.

       故討論方程的根的個(gè)數(shù).

       即的根的個(gè)數(shù).

       令.注意,方程根的個(gè)數(shù)即交點(diǎn)個(gè)數(shù).

        對(duì), ,

        令, 得

         當(dāng)時(shí),; 當(dāng)時(shí),.  ∴,

         當(dāng)時(shí),;   當(dāng)時(shí),, 但此時(shí)

,此時(shí)以軸為漸近線。

       ①當(dāng)時(shí),方程無(wú)根;

②當(dāng)時(shí),方程只有一個(gè)根.

③當(dāng)時(shí),方程有兩個(gè)根.

 (3)由(1)知,   令,

      ∴,于是,

      ∴

         .

22、(文)22.解:(1)在中,

.  (小于的常數(shù))

故動(dòng)點(diǎn)的軌跡是以,為焦點(diǎn),實(shí)軸長(zhǎng)的雙曲線.方程為

(2)方法一:在中,設(shè),,

假設(shè)為等腰直角三角形,則

由②與③得:

由⑤得:,

故存在滿足題設(shè)條件.

方法二:(1)設(shè)為等腰直角三角形,依題設(shè)可得:

所以

.①

,可設(shè),

.②

由①②得.③

根據(jù)雙曲線定義可得,

平方得:.④

由③④消去可解得,

故存在滿足題設(shè)條件.

 

 

 

 

(理)解:(1) ,

,

    于是,所求“果圓”方程為

    ,.                    

(2)由題意,得  ,即

         ,,得.  

     又.  .                                             

(3)設(shè)“果圓”的方程為,

    記平行弦的斜率為

當(dāng)時(shí),直線與半橢圓的交點(diǎn)是

,與半橢圓的交點(diǎn)是

 的中點(diǎn)滿足  得 .  

     , 

    綜上所述,當(dāng)時(shí),“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上. 

    當(dāng)時(shí),以為斜率過(guò)的直線與半橢圓的交點(diǎn)是.  

由此,在直線右側(cè),以為斜率的平行弦的中點(diǎn)軌跡在直線上,即不在某一橢圓上.   當(dāng)時(shí),可類似討論得到平行弦中點(diǎn)軌跡不都在某一橢圓上.

 


同步練習(xí)冊(cè)答案