導(dǎo)數(shù)法 [典型例題] [例1] 求下列函數(shù)值域 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) 答案: (1) (2) (3) (4) (5) (6) (7) (8) ∴ (9) (10) 且 且 且 (11)令 (12)令 (13)令 ∴ (14) ① ② 且 ∴ (15) (16)P()A ∴ ∴ (17) ∴ ∴ ∴ (18) 令 ∴ ∴ [例2] .為方程的兩根.為何值時(shí).最小.并求最小值. 答案: ∴ 時(shí). [例3] ...求的最值. 答案: ∴ [模擬試題] 查看更多

 

題目列表(包括答案和解析)

我們把形如y=f(x
)
φ(x)
 
的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)法數(shù):在函數(shù)解析式兩邊求對(duì)數(shù)得lny=lnf(x
)
φ(x)
 
=φ(x)lnf(x)
,兩邊對(duì)x求導(dǎo)數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x
)
φ(x)
 
[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運(yùn)用此方法可以求得函數(shù)y=
x
x
 
(x>0)
在(1,1)處的切線方程是
y=x
y=x

查看答案和解析>>

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得lny=φ(x)lnf(x),兩邊求導(dǎo)數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x)φ(x)[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運(yùn)用此方法可以探求得函數(shù)y=x
1
x
的一個(gè)單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

函數(shù)y=f(x)g(x)在求導(dǎo)數(shù)時(shí),可以運(yùn)用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得lny=g(x)lnf(x),兩邊求導(dǎo)數(shù)
y′
y
=g′(x)lnf(x)+g(x)
f′(x)
f(x)
,于是y'=f(x)g(x)[g′(x)lnf(x)+g(x)
f′(x)
f(x)
]
.運(yùn)用此方法可以探求得知y=x
1
x
(x>0)
的一個(gè)單調(diào)增區(qū)間為
 

查看答案和解析>>

Ⅰ(理)我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得,兩邊求導(dǎo)數(shù),得

,于是,運(yùn)用此方法可以探求得函數(shù)的一個(gè)單調(diào)遞增區(qū)間是

A.       B.       C.       D.  

 

查看答案和解析>>

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊取對(duì)數(shù)得,兩邊對(duì)x求導(dǎo)數(shù),得于是,運(yùn)用此方法可以求得函數(shù)在(1,1)處的切線方程是          .

 

查看答案和解析>>


同步練習(xí)冊(cè)答案