19.設(shè)數(shù)列{an}的各項為正數(shù).若對任意的正整數(shù)n, an與2的等差中項等于其前n項和n與2的等比中項.求{an}的通項公式. 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Sn是an2和an的等差中項.
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式Sn-1005>
a
2
n
2
恒成立,求這樣的正整數(shù)m共有多少個?

查看答案和解析>>

設(shè)數(shù)列{an}的各項都是正數(shù),記Sn為數(shù)列{an}的前n項和,且對任意n∈N*,都有a13+a23+a33+…+an3=Sn2
(Ⅰ)求證:an2=2Sn-an
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若bn=3n+(-1)n-1λ•2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意 n∈N*,都有bn+1>bn

查看答案和解析>>

設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N*,都有a13+a23+a33+…+=Sn2,其中Sn為數(shù)列{an}的前n項和.
(I)求證:an2=2Sn-an;
(II)求數(shù)列{an}的通項公式;
(III)若bn=3n+(-1)n-1λ•2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有bn+1>bn,若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

設(shè)數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Sn
1
2
an2和an的等差中項
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1
;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式2Sn-4200>
a
2
n
2
恒成立,試問:這樣的正整數(shù)m共有多少個.

查看答案和解析>>

設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N*,都有+…+,記Sn為數(shù)列{an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)若bn=3n+(-1)n-1λ·2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有bn+1>bn.

查看答案和解析>>


同步練習冊答案