A. B.{-1,0,1} C. D.{x|-1<x<2} 查看更多

 

題目列表(包括答案和解析)

“|x-1|<2”成立是“x(x-3)<0”成立的

[  ]
A.

充分不必要條件

B.

必要不充分條件

C.

充要條件

D.

既不充分也不必要條件

查看答案和解析>>

“|x-1|<2”成立是“x(x-3)<0”成立的

[  ]
A.

充分不必要條件

B.

必要不充分條件

C.

充要條件

D.

既不充分也不必要條件

查看答案和解析>>

“|x-1|<2成立”是“x(x-3)<0成立”的

[  ]

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件

查看答案和解析>>

“|x-1|<2成立”是“x(x-3)<0成立”的

[  ]
A.

充分不必要條件

B.

必要不充分條件

C.

充分必要條件

D.

既不充分也不必要條件

查看答案和解析>>

“|x-1|<2成立”是“x(x-2)<0成立”的

[  ]
A.

充分不必要條件

B.

必要不充分條件

C.

充分必要條件

D.

既不充分也不必要條件

查看答案和解析>>

1-5  ACADC。 6-10   ACABB    11-12 DA

13. 28    14.      15. -4n+5 ;       16. ①③④

17.(1),,即,

       ,,

       ,∴.                                  5分

  

18.解法一:證明:連結(jié)OC,

.   ----------------------------------------------------------------------------------1分

,,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)過O作,連結(jié)AE,

       ,

∴AE在平面BCD上的射影為OE.

.  -----------------------------------------7分

中,,,,   

       ∴

       ∴二面角A-BC-D的大小為.   ---------------------------------------------------8分

       (III)解:設(shè)點(diǎn)O到平面ACD的距離為

,

 ∴

中, ,

            

,∴

         ∴點(diǎn)O到平面ACD的距離為.--------------------------------12分

        解法二:(I)同解法一.

       (II)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

則     

      

.  ------------6分

設(shè)平面ABC的法向量,

,

設(shè)夾角為,則

∴二面角A-BC-D的大小為. --------------------8分

       (III)解:設(shè)平面ACD的法向量為,又

       .   -----------------------------------11分

設(shè)夾角為,

   則     -       設(shè)O 到平面ACD的距離為h,

,∴O到平面ACD的距離為.  ---------------------12分

 

19.(Ⅰ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,且,

故取出的4個(gè)球均為黑球的概率為.…….6分

(Ⅱ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件互斥,

,

故取出的4個(gè)球中恰有1個(gè)紅球的概率為...12分

20. 解:(Ⅰ)由已知,當(dāng)時(shí),   ……………… 2分

,得,∴p=…………….4分

.……………… 6分

(Ⅱ)由(1)得,.       ……………… 7分

2  ;              ①

.    ②  ………9分

②-①得,

.       ………………12分

21.解(I)

 

(II)

時(shí),是減函數(shù),則恒成立,得

 

22.解(I)設(shè)

                   

(3分)

 

 (Ⅱ)(1)當(dāng)直線的斜率不存在時(shí),方程為

      

       …………(4分)

  (2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為

       設(shè),

      ,得

       …………(6分)

      

      

…………………8分

                                      ………………….9分

注意也可用..........12分

 

 

 

 

 


同步練習(xí)冊答案