題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
1-5 ACADC。 6-10 ACABB 11-12 DA
13. 28 14. 15. -4n+5 ; 16. ①③④
17.(1),,即,
,,, ,
,∴. 5分
18.解法一:證明:連結(jié)OC,
∴. ----------------------------------------------------------------------------------1分
,,
∴ . ------------------------------------------------------2分
在中,
∴即 ------------------3分
面. ----------------------------4分
(II)過(guò)O作,連結(jié)AE,
,
∴AE在平面BCD上的射影為OE.
∴.
∴ . -----------------------------------------7分
在中,,,,
∴.
∴二面角A-BC-D的大小為. ---------------------------------------------------8分
(III)解:設(shè)點(diǎn)O到平面ACD的距離為
,
∴.
在中, ,
.
而,∴.
∴點(diǎn)O到平面ACD的距離為.--------------------------------12分
解法二:(I)同解法一.
(II)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,
則
,
∴. ------------6分
設(shè)平面ABC的法向量,
,,
由.
設(shè)與夾角為,則.
∴二面角A-BC-D的大小為. --------------------8分
(III)解:設(shè)平面ACD的法向量為,又,
. -----------------------------------11分
設(shè)與夾角為,
則 - 設(shè)O 到平面ACD的距離為h,
∵,∴O到平面ACD的距離為. ---------------------12分
19.(Ⅰ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,且,.
故取出的4個(gè)球均為黑球的概率為.…….6分
(Ⅱ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件,“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件互斥,
且,.
故取出的4個(gè)球中恰有1個(gè)紅球的概率為...12分
20. 解:(Ⅰ)由已知,當(dāng)時(shí), ……………… 2分
由,得,∴p=…………….4分
∴.……………… 6分
(Ⅱ)由(1)得,. ……………… 7分
2 ; ①
. ② ………9分
②-①得,
==. ………………12分
21.解(I)
(II)
若時(shí),是減函數(shù),則恒成立,得
22.解(I)設(shè)
(3分)
(Ⅱ)(1)當(dāng)直線的斜率不存在時(shí),方程為
…………(4分)
(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,
設(shè),
,得
…………(6分)
…………………8分
………………….9分
注意也可用..........12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com