(I)求動點的軌跡的方程, 查看更多

 

題目列表(包括答案和解析)

動點M(x,y)到定點F(-1,0)的距離與到y(tǒng)軸的距離之差為1.
(I)求動點M的軌跡C的方程;
(II)過點Q(-3,0)的直線l與曲線C交于A、B兩點,問直線x=3上是否存在點P,使得△PAB是等邊三角形?若存在,求出所有的點P;若不存在,請說明理由.

查看答案和解析>>

設動點的坐標為x、),向量,,且=8.

   (I)求動點的軌跡的方程;

   (Ⅱ)過點作直線與曲線交于、兩點,若為坐標原點),是否存在直線,使得四邊形為矩形,若存在,求出直線的方程,若不存在,請說明理由.

查看答案和解析>>

動點M(x,y)到定點F(-1,0)的距離與到y(tǒng)軸的距離之差為1.
(I)求動點M的軌跡C的方程;
(II)過點Q(-3,0)的直線l與曲線C交于A、B兩點,問直線x=3上是否存在點P,使得△PAB是等邊三角形?若存在,求出所有的點P;若不存在,請說明理由.

查看答案和解析>>

動點M(x,y)到定點F(-1,0)的距離與到y(tǒng)軸的距離之差為1.
(I)求動點M的軌跡C的方程;
(II)過點Q(-3,0)的直線l與曲線C交于A、B兩點,問直線x=3上是否存在點P,使得△PAB是等邊三角形?若存在,求出所有的點P;若不存在,請說明理由.

查看答案和解析>>

(理)已知平面內(nèi)動點P(x,y)到定點F(
5
,0)
與定直線l:x=
4
5
的距離之比是常數(shù)
5
2

( I)求動點P的軌跡C及其方程;
( II)求過點Q(2,1)且與曲線C有且僅有一個公共點的直線方程.

查看答案和解析>>

1-5  ACADC。 6-10   ACABB    11-12 DA

13. 28    14.      15. -4n+5 ;       16. ①③④

17.(1),,即

       ,,,

       ,∴.                                  5分

  

18.解法一:證明:連結(jié)OC,

.   ----------------------------------------------------------------------------------1分

,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)過O作,連結(jié)AE,

       ,

∴AE在平面BCD上的射影為OE.

.  -----------------------------------------7分

中,,,,   

       ∴

       ∴二面角A-BC-D的大小為.   ---------------------------------------------------8分

       (III)解:設點O到平面ACD的距離為

,

 ∴

中, ,

            

,∴

         ∴點O到平面ACD的距離為.--------------------------------12分

        解法二:(I)同解法一.

       (II)解:以O為原點,如圖建立空間直角坐標系,

則     

       ,

.  ------------6分

設平面ABC的法向量,

,

夾角為,則

∴二面角A-BC-D的大小為. --------------------8分

       (III)解:設平面ACD的法向量為,又,

       .   -----------------------------------11分

夾角為

   則     -       設O 到平面ACD的距離為h,

,∴O到平面ACD的距離為.  ---------------------12分

 

19.(Ⅰ)解:設“從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,且

故取出的4個球均為黑球的概率為.…….6分

(Ⅱ)解:設“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是紅球,1個是黑球”為事件,“從甲盒內(nèi)取出的2個球中,1個是紅球,1個是黑球;從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件互斥,

,

故取出的4個球中恰有1個紅球的概率為...12分

20. 解:(Ⅰ)由已知,當時,   ……………… 2分

,得,∴p=…………….4分

.……………… 6分

(Ⅱ)由(1)得,.       ……………… 7分

2  ;              ①

.    ②  ………9分

②-①得,

.       ………………12分

21.解(I)

 

(II)

時,是減函數(shù),則恒成立,得

 

22.解(I)設

                   

(3分)

 

 (Ⅱ)(1)當直線的斜率不存在時,方程為

      

       …………(4分)

  (2)當直線的斜率存在時,設直線的方程為,

       設,

      ,得

       …………(6分)

      

      

…………………8分

                                      ………………….9分

注意也可用..........12分

 

 

 

 

 


同步練習冊答案