掌握平方根的概念.明確平方根和算術(shù)平方根之間的聯(lián)系和區(qū)別. 查看更多

 

題目列表(包括答案和解析)

小明思考課本63頁提到的算術(shù)平方根的定義:“正數(shù)的正平方根和零的平方根,統(tǒng)稱為算術(shù)平方根”,由此他得到實數(shù)a(a≥0)的算術(shù)平方根
a
是一個非負數(shù),即
a
≥0.由此,你能解決下面這道習題嗎?
4-x
+|2+y|=0
,求yx的平方根.

查看答案和解析>>

小明在課外閱讀中對有關(guān)“自定義型題”有了一定的了解,他也嘗試著自定義了“顛倒數(shù)”的概念:從左到右寫下一個自然數(shù),再把它按從右到左的順序?qū)懸槐,如果兩?shù)位數(shù)相同,這樣就得到了這個數(shù)的“顛倒數(shù)”,如348的顛倒數(shù)是843.
請你探究,解決下列問題:
(1)請直接寫出2012的“顛倒數(shù)”為
2102
2102

(2)若數(shù)a存在“顛倒數(shù)”,則它滿足的條件是:
數(shù)a的末位數(shù)字不等于零
數(shù)a的末位數(shù)字不等于零

(3)能否找到一個數(shù)字填入空格,使下列由“顛倒數(shù)”構(gòu)成的等式成立?12×23□=□32×21.請你用下列步驟探究:
設(shè)這個數(shù)字為x,將“23□”和“□32”轉(zhuǎn)化為用含x的代數(shù)式表示分別為
230+x
230+x
100x+32
100x+32

列出滿足條件的關(guān)于x的方程:
12(230+x)=21(100x+32)
12(230+x)=21(100x+32)
;
解這個方程的:x=
1
1
;
經(jīng)檢驗,所求的x值符合題意嗎?
符合
符合
(填“符合”或“不符合”).

查看答案和解析>>

小明在課外閱讀中對有關(guān)“自定義型題”有了一定的了解,他也嘗試著自定義了“顛倒數(shù)”的概念:從左到右寫下一個自然數(shù),再把它按從右到左的順序?qū)懸槐,如果兩?shù)位數(shù)相同,這樣就得到了這個數(shù)的“顛倒數(shù)”,如348的顛倒數(shù)是843.
請你探究,解決下列問題:
(1)請直接寫出2012的“顛倒數(shù)”為          。
(2)若數(shù)存在“顛倒數(shù)”,則它滿足的條件是:                       。
(3)能否找到一個數(shù)字填入空格,使下列由“顛倒數(shù)”構(gòu)成的等式成立?
 。請你用下列步驟探究:
設(shè)這個數(shù)字為,將轉(zhuǎn)化為用含的代數(shù)式表示分別為              ;
列出滿足條件的關(guān)于的方程:                          ;
解這個方程的:=         
經(jīng)檢驗,所求的值符合題意嗎?        (填“符合”或“不符合”)。

查看答案和解析>>

小明在課外閱讀中對有關(guān)“自定義型題”有了一定的了解,他也嘗試著自定義了“顛倒數(shù)”的概念:從左到右寫下一個自然數(shù),再把它按從右到左的順序?qū)懸槐椋绻麅蓴?shù)位數(shù)相同,這樣就得到了這個數(shù)的“顛倒數(shù)”,如348的顛倒數(shù)是843.

請你探究,解決下列問題:

(1)請直接寫出2012的“顛倒數(shù)”為          

(2)若數(shù)存在“顛倒數(shù)”,則它滿足的條件是:                       

(3)能否找到一個數(shù)字填入空格,使下列由“顛倒數(shù)”構(gòu)成的等式成立?

 。請你用下列步驟探究:

設(shè)這個數(shù)字為,將轉(zhuǎn)化為用含的代數(shù)式表示分別為                ;

列出滿足條件的關(guān)于的方程:                           ;

解這個方程的:=          ;

經(jīng)檢驗,所求的值符合題意嗎?         (填“符合”或“不符合”)。

 

查看答案和解析>>


同步練習冊答案