解(Ⅰ)由已知有, 解得b1=1, a1=-13. 從而an =-13+(n-1)·2=2 n-15, bn=1×2 n-1=2 n-1, cn= anbn=2 n-1. (Ⅱ) ∵Sn= a1b1+ a2b2+-+anbn, ① qSn= a1b2+ a2b3+-+anbn+1. ②. ①-②得(1-q)Sn= a1b1+d( b2 +b3+-+bn)- anbn+1= a1b1+ d·- anbn+1 =-13+2-2 n=-[ 2 n+17], ∴Sn= 2 n+17. ∴=== 查看更多

 

題目列表(包括答案和解析)

仔細(xì)閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問題的解法,解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

查看答案和解析>>

仔細(xì)閱讀下面問題的解法:

    設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍。

    解:由已知可得  a 21-x

        令f(x)= 21-x ,∵不等式a <21-x在A上有解,

        ∴a <f(x)在A上的最大值.

        又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2.  ∴實數(shù)a的取值范圍為a<2.

研究學(xué)習(xí)以上問題的解法,請解決下面的問題:

(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;

(2)對于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);

(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數(shù)a的取值范圍。

查看答案和解析>>

仔細(xì)閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問題的解法,解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=數(shù)學(xué)公式x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|數(shù)學(xué)公式>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

查看答案和解析>>

如圖,在三棱柱中,側(cè)面為棱上異于的一點,,已知,求:

(Ⅰ)異面直線的距離;

(Ⅱ)二面角的平面角的正切值.

【解析】第一問中,利用建立空間直角坐標(biāo)系

解:(I)以B為原點,、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,

在三棱柱中有

,

設(shè)

側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

(II)由已知有故二面角的平面角的大小為向量的夾角.

 

查看答案和解析>>

在△ABC中,由已知條件解三角形,其中有兩解的是( 。
A、b=20,A=45°,C=80°B、a=30,c=28,B=60°C、a=14,b=16,A=45°D、a=12,c=15,A=120°

查看答案和解析>>


同步練習(xí)冊答案