21.在數(shù)列中.前n項(xiàng)和為 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)在數(shù)列中,前n項(xiàng)和為

   (1)求數(shù)列是等差數(shù)列.

   (2)求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

(本小題滿分12分)在數(shù)列中,前n項(xiàng)和為

(1)求數(shù)列是等差數(shù)列.
(2)求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

(本小題滿分12分)

      在數(shù)列中,為常數(shù),,且成公比不等

于1的等比數(shù)列. w.w.w.k.s.5.u.c.o.m              

      (Ⅰ)求的值;

      (Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

 

(本小題滿分12分)在數(shù)列中,,

(Ⅰ)求數(shù)列的通項(xiàng)公式。

(Ⅱ)求數(shù)列的前項(xiàng)和

查看答案和解析>>

(本小題滿分12分)在數(shù)列中,,

(Ⅰ)求數(shù)列的通項(xiàng)公式。

(Ⅱ)求數(shù)列的前項(xiàng)和

查看答案和解析>>

一、選擇題

20080422

二、填空題

13.2    14.   15.   16.①③④

三、解答題

17.解:(1)……………………3分

……………………6分

(2)因?yàn)?sub>

………………9分

……………………12分

文本框:  18.方法一:

(1)證明:連結(jié)BD,

∵D分別是AC的中點(diǎn),PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2,

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=,

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2,

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點(diǎn)E,連結(jié)DE、PE,由E為AB的中點(diǎn)知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設(shè)點(diǎn)E到平面PBC的距離為h.

∵VP―EBC=VE―PBC,

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點(diǎn)E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

過(guò)點(diǎn)D作AB的平行線交BC于點(diǎn)F,以D為

原點(diǎn),DE為x軸,DF為y軸,

DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

則D(0,0,0),P(0,0,),

E(),B=(

設(shè)上平面PAB的一個(gè)法向量,

則由

這時(shí),……………………6分

顯然,是平面ABC的一個(gè)法向量.

∴二面角P―AB―C的大小是……………………8分

(3)解:

設(shè)平面PBC的一個(gè)法向量,

是平面PBC的一個(gè)法向量……………………10分

∴點(diǎn)E到平面PBC的距離為………………12分

19.解:(1)由題設(shè),當(dāng)價(jià)格上漲x%時(shí),銷(xiāo)售總金額為:

   (2)

……………………3分

當(dāng)

當(dāng)x=50時(shí),

即該噸產(chǎn)品每噸的價(jià)格上漲50%時(shí),銷(xiāo)售總最大.……………………6分

(2)由(1)

如果上漲價(jià)格能使銷(xiāo)假售總金額增加,

則有……………………8分

即x>0時(shí),

注意到m>0

  ∴   ∴

∴m的取值范圍是(0,1)…………………………12分

20.解(1)由已知,拋物線,焦點(diǎn)F的坐標(biāo)為F(0,1)………………1分

當(dāng)l與y軸重合時(shí),顯然符合條件,此時(shí)……………………3分

當(dāng)l不與y軸重合時(shí),要使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過(guò)點(diǎn)()設(shè)l的斜率為k,則直線l的方程為

由已知可得………5分

解得無(wú)意義.

因此,只有時(shí),拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等.……7分

(2)由已知可設(shè)直線l的方程為……………………8分

則AB所在直線為……………………9分

代入拋物線方程………………①

的中點(diǎn)為

代入直線l的方程得:………………10分

又∵對(duì)于①式有:

解得m>-1,

l在y軸上截距的取值范圍為(3,+)……………………12分

21.解:(1)由

……………………3分

又由已知

∴數(shù)列是以3為首項(xiàng),以-1為公差的等差數(shù)列,且…………6分

(2)∵……………………8分

…………①

…………②………………10分

②―①得

……………………12分

22.解:(1)和[0,2]上有相反的單調(diào)性,

的一個(gè)極值點(diǎn),故

   (2)令

因?yàn)?sub>和[4,5]上有相反的單調(diào)性,

和[4,5]上有相反的符號(hào),

……………………7分

假設(shè)在點(diǎn)M在點(diǎn)M的切線斜率為3b,則

故不存在點(diǎn)M在點(diǎn)M的切線斜率為3b………………9分

   (3)∵的圖象過(guò)點(diǎn)B(2,0),

設(shè),依題意可令

……………………12分

∴當(dāng)

……………………14分

 


同步練習(xí)冊(cè)答案