55.教材中“直線和圓 與“圓錐曲線 兩章內(nèi)容體現(xiàn)出解析幾何的本質(zhì)是用代數(shù)的方法研究圖形的幾何性質(zhì). 查看更多

 

題目列表(包括答案和解析)

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將選題號填入括號中
(1)(本題滿分7分)選修4一2:矩陣與變換
求矩陣的特征值及對應的特征向量。
(2)(本題滿分7分)選修4一4:坐標系與參數(shù)方程
已知直線的參數(shù)方程:為參數(shù))和圓的極坐標方程:
(I)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;
(II)判斷直線和圓的位置關(guān)系
(3)(本題滿分7分)選修4一5:不等式選講
已知函數(shù). 若不等式恒成立,求實數(shù)的范圍。

查看答案和解析>>


C.選修4—4:坐標系與參數(shù)方程
(本小題滿分10分)
在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)),判斷直線和圓的位置關(guān)系.

查看答案和解析>>

對于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”。已知直線,,和圓C的位置關(guān)系是“平行相交”,則b的取值范圍為( )

A. B.

C. D.

 

查看答案和解析>>

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

 以直角坐標系的原點為極點,軸的正半軸為極軸。已知點的直角坐標為(1,-5),點的極坐標為若直線過點,且傾斜角為,圓為圓心、為半徑。

(I)求直線的參數(shù)方程和圓的極坐標方程;

(II)試判定直線和圓的位置關(guān)系.

(2)(本小題滿分7分)選修4-4:矩陣與變換

把曲線先進行橫坐標縮為原來的一半,縱坐標保持不變的伸縮變換,再做關(guān)于軸的反射變換變?yōu)榍,求曲線的方程.

(3)(本小題滿分7分)選修4-5:不等式選講

關(guān)于的一元二次方程對任意無實根,求實數(shù)的取值范圍.

 

查看答案和解析>>

(本小題滿分14分)本題(1)、(2)、(3)三個選答題,每小題7分,任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分) 選修4-2:矩陣與變換

已知,若所對應的變換把直線變換為自身,求實數(shù),并求的逆矩陣。

 

(2)(本題滿分7分)選修4-4:坐標系與參數(shù)方程

 已知直線的參數(shù)方程:為參數(shù))和圓的極坐標方程:。

①將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;

②判斷直線和圓的位置關(guān)系。

 

(3)(本題滿分7分)選修4-5:不等式選講

 已知函數(shù)

①解不等式;

②證明:對任意,不等式成立.

 

 

查看答案和解析>>


同步練習冊答案