11.若多項多 A.509 B.510 C.511 D.1022 查看更多

 

題目列表(包括答案和解析)

若多項式

    A.509            B.510            C.511            D.1022

 

查看答案和解析>>

若多項為=

A.509                        B.510                        C.511                        D.1022

查看答案和解析>>

若多項式

A.509                        B.510                        C.511                        D.1022 

查看答案和解析>>

 [番茄花園1]  若多項為=

A.509  B.510  C.511  D.1022

 

 


 [番茄花園1]10.

查看答案和解析>>

(08年福州質(zhì)檢理)若多項式

                                                                                                                              (    )

       A.509                     B.510                     C.511                     D.1022

查看答案和解析>>

一、選擇題

        20080422

        二、填空題

        13.2    14.3   15.   16.①③④

        三、解答題

        17.解:(1)……………………3分

        ……………………6分

        (2)因為

        ………………9分

        ……………………12分

        文本框:  18.方法一:

        (1)證明:連結(jié)BD,

        ∵D分別是AC的中點,PA=PC=

        ∴PD⊥AC,

        ∵AC=2,AB=,BC=

        ∴AB2+BC2=AC2,

        ∴∠ABC=90°,即AB⊥BC.…………2分

        ∴BD=

        ∵PD2=PA2―AD2=3,PB

        ∴PD2+BD2=PB2

        ∴PD⊥BD,

        ∵ACBD=D

        ∴PD⊥平面ABC.…………………………4分

        (2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

        ∵AB⊥BC,

        ∴AB⊥DE,

        ∵DE是直線PE的底面ABC上的射景

        ∴PE⊥AB

        ∴∠PED是二面角P―AB―C的平面角,……………………6分

        在△PED中,DE=∠=90°,

        ∴tan∠PDE=

        ∴二面角P―AB―C的大小是

        (3)解:設(shè)點E到平面PBC的距離為h.

        ∵VP―EBC=VE―PBC,

        ……………………10分

        在△PBC中,PB=PC=,BC=

        而PD=

        ∴點E到平面PBC的距離為……………………12分

        方法二:

        (1)同方法一:

        (2)解:解:取AB的中點E,連結(jié)DE、PE,

        過點D作AB的平行線交BC于點F,以D為

        DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

        則D(0,0,0),P(0,0,),

        E(),B=(

        設(shè)上平面PAB的一個法向量,

        則由

        這時,……………………6分

        顯然,是平面ABC的一個法向量.

        ∴二面角P―AB―C的大小是……………………8分

        (3)解:

        設(shè)平面PBC的一個法向量,

        是平面PBC的一個法向量……………………10分

        ∴點E到平面PBC的距離為………………12分

        19.解:(1)由題設(shè),當(dāng)價格上漲x%時,銷售總金額為:

           (2)

        ……………………3分

        當(dāng)

        當(dāng)x=50時,

        即該噸產(chǎn)品每噸的價格上漲50%時,銷售總最大.……………………6分

        (2)由(1)

        如果上漲價格能使銷假售總金額增加,

        則有……………………8分

        即x>0時,

        注意到m>0

          ∴   ∴

        ∴m的取值范圍是(0,1)…………………………12分

        20.解(1)由已知,拋物線,焦點F的坐標(biāo)為F(0,1)………………1分

        當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

        當(dāng)l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點()設(shè)l的斜率為k,則直線l的方程為

        由已知可得………5分

        解得無意義.

        因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

        (2)由已知可設(shè)直線l的方程為……………………8分

        則AB所在直線為……………………9分

        代入拋物線方程………………①

        的中點為

        代入直線l的方程得:………………10分

        又∵對于①式有:

        解得m>-1,

        l在y軸上截距的取值范圍為(3,+)……………………12分

        21.解:(1)在………………1分

        當(dāng)兩式相減得:

        整理得:……………………3分

        當(dāng)時,,滿足上式,

        (2)由(1)知

        ………………8分

        ……………………10分

        …………………………12分

        22.解:(1)…………………………1分

        是R上的增函數(shù),故在R上恒成立,

        在R上恒成立,……………………2分

        …………3分

        故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

        ∴當(dāng)

        的最小值………………6分

        亦是R上的增函數(shù)。

        故知a的取值范圍是……………………7分

        (2)……………………8分

        ①當(dāng)a=0時,上單調(diào)遞增;…………10分

        可知

        ②當(dāng)

        即函數(shù)上單調(diào)遞增;………………12分

        ③當(dāng)時,有,

        即函數(shù)上單調(diào)遞增。………………14分

         


        同步練習(xí)冊答案