(Ⅲ)所求的概率為.???12分 查看更多

 

題目列表(包括答案和解析)

為了了解某市工人開展體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠

(Ⅰ)從A,B,C區(qū)中分別抽取的工廠個數(shù);

(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調(diào)查結(jié)果的對比,計算這2個工廠中至少有1個來自A區(qū)的概率.

【解析】本試題主要考查了統(tǒng)計和概率的綜合運用。

第一問工廠總數(shù)為18+27+18=63,樣本容量與總體中的個體數(shù)比為7/63=1/9…3分

所以從A,B,C三個區(qū)中應(yīng)分別抽取的工廠個數(shù)為2,3,2。

第二問設(shè)A1,A2為在A區(qū)中的抽得的2個工廠,B1,B2­,B3為在B區(qū)中抽得的3個工廠,

C1,C2為在C區(qū)中抽得的2個工廠。

這7個工廠中隨機的抽取2個,全部的可能結(jié)果有1/2*7*6=32種。

隨機的抽取的2個工廠至少有一個來自A區(qū)的結(jié)果有A1,A2),A1,B2),A1,B1),

A1,B3)A1,C2),A1,C1), …………9分

同理A2還能給合5種,一共有11種。  

所以所求的概率為p=11/21

 

查看答案和解析>>

某校高二年級有學(xué)生1000人,在某次數(shù)學(xué)考試中,為研究學(xué)生的考試情況,需從中抽取40名學(xué)生的成績,
(1)問采用何種抽樣方法更合適?
(2)根據(jù)所抽取的40名學(xué)生成績,分組在[120,130),[130,140),[140,150]的頻率分布直方圖中對應(yīng)的小矩形的高分別是0.01,0.005,0.005,問所取的40名學(xué)生的成績不低于120分的共有多少人?
(3)在(2)所求的成績不低于120分的學(xué)生中任取2人為一組(不分先后),求至少有1人的成績在[120,130)內(nèi)的概率.

查看答案和解析>>

某校高二年級有學(xué)生1000人,在某次數(shù)學(xué)考試中,為研究學(xué)生的考試情況,需從中抽取40名學(xué)生的成績,
(1)問采用何種抽樣方法更合適?
(2)根據(jù)所抽取的40名學(xué)生成績,分組在[120,130),[130,140),[140,150]的頻率分布直方圖中對應(yīng)的小矩形的高分別是0.01,0.005,0.005,問所取的40名學(xué)生的成績不低于120分的共有多少人?
(3)在(2)所求的成績不低于120分的學(xué)生中任取2人為一組(不分先后),求至少有1人的成績在[120,130)內(nèi)的概率.

查看答案和解析>>

某校高二年級有學(xué)生1000人,在某次數(shù)學(xué)考試中,為研究學(xué)生的考試情況,需從中抽取40名學(xué)生的成績,
(1)問采用何種抽樣方法更合適?
(2)根據(jù)所抽取的40名學(xué)生成績,分組在[120,130),[130,140),[140,150]的頻率分布直方圖中對應(yīng)的小矩形的高分別是0.01,0.005,0.005,問所取的40名學(xué)生的成績不低于120分的共有多少人?
(3)在(2)所求的成績不低于120分的學(xué)生中任取2人為一組(不分先后),求至少有1人的成績在[120,130)內(nèi)的概率.

查看答案和解析>>

某校高二年級有學(xué)生1000人,在某次數(shù)學(xué)考試中,為研究學(xué)生的考試情況,需從中抽取40名學(xué)生的成績,
(1)問采用何種抽樣方法更合適?
(2)根據(jù)所抽取的40名學(xué)生成績,分組在[120,130),[130,140),[140,150]的頻率分布直方圖中對應(yīng)的小矩形的高分別是0.01,0.005,0.005,問所取的40名學(xué)生的成績不低于120分的共有多少人?
(3)在(2)所求的成績不低于120分的學(xué)生中任取2人為一組(不分先后),求至少有1人的成績在[120,130)內(nèi)的概率.

查看答案和解析>>


同步練習(xí)冊答案