題目列表(包括答案和解析)
sin(α-π)cos(2π-α)sin(-α+
| ||
cos(π-α)sin(π-α) |
3 |
A、-
| ||||
B、-
| ||||
C、
| ||||
D、
|
3 |
|
|
說明:
一、本解答指出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解答與本解答不同,可根據(jù)試題的主要內(nèi)容比照評分標(biāo)準(zhǔn)制定相應(yīng)的評分細則.
二、對計算題,當(dāng)考生的解答 某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯誤,就不再給分.
三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).
四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.
一、選擇題:本題主要考查基礎(chǔ)知識和基本運算.
1、A 2、A 3、C 4、C 5、A 6、C
7、B 8、C 9、A 10、D 11、B 12、B
二、填空題:本大題共4個小題;每小題4分,共16分.本題主要考查基礎(chǔ)知識和基本運算.
13、2 14、0 15、2 16、② ④
三、解答題:本大題共6小題,共74分,解答題應(yīng)寫出文字說明,證明過程或演算步驟,在答題卡上相應(yīng)題目的答題區(qū)域內(nèi)作答.
17.本小題主要考查三角函數(shù)的符號,誘導(dǎo)公式,兩角和差公式,二倍角公式,三角函數(shù)的圖象及單調(diào)性等基本知識以及推理和運算能力.滿分12分
解:(1)∵且sin2=∴2sincos= ,sin≥0得cos>0
從而sin+cos>0 ………………………………………………………… 3分
∴ =sin+cos=== …………6分
(2)∵∴=-sinx+cosx=sin(x+) ………………………… 8分
∴時,的單調(diào)遞增區(qū)間為[,],………………………………10分
單調(diào)遞減區(qū)間為[,2].………………………………………… 12分
18.本小題主要考查等差、比數(shù)列的概念,應(yīng)用通項公式及求和公式進行計算的能力.
滿分12分
解:(1) ∴,
所以, 數(shù)列是以為首項,為公差的等差數(shù)列,………4分
∴
(2)由(1)得
解法二:(1)同解法一
(2) 由(1)得
∴……………8分,
∴,
∴, ……………10分
=
=,……………………………11分
又. ………………………12分
19.本小題主要考查直線和平面的位置關(guān)系,二面角的大小,點到平面的距離?疾榭臻g想象能力、邏輯推理能力和運算能力.滿分12分
解法一:(1)在直角梯形ABCD中,過點A做AN垂直BC,
垂足為N,易得BN=1,同時四邊形ANCD是矩形,
則CN=1,點N為BC的中點,所以點N與點M重合,.
…………………………………………………………2分
連結(jié)AM,
因為平面ABCD,所以,又AD∥BC,
所以SM AD!4分
(2)過點A做AG垂直SM,G為垂足,
易證平面SAM,
則,在RT中, !7分
又AD∥平面SBC,所以點D到平面SBC的距離為點A到平面SBC的距離AG,
點D到平面SBC的距離為………8分
(3)取AB中點E,因為是等邊三角形,所以,又,得,過點E作EF垂直SB, F為垂足,連結(jié)CF,則,所以是二面角A-SB-C的平面角.………10分
在RT中,.在RT中,,所以二面角A-SB-C的大小為.………12分
解法二:(1)同解法一.
(2)根據(jù)(1),如圖所示,分別以AM,AD,AC所在射線為x,y,z軸建立空間直角坐標(biāo)系.
有A(0,0,0),M(,0,0),B(,-1,0),C(,1 ,0),D(0,1 ,0),S(0,0 ,1)
所以,,.
設(shè)平面SBC的法向量,則,
即 ,
解得,取.………6分
又=,則點D到平面SBC的距離
.………8分
(3)設(shè)平面ASB的法向量,則,
即,
解得,取.………10分
∴,則二面角A-SB-C的大小為.………12分
20.本小題主要考查排列組合與概率的基礎(chǔ)知識,考查推理、運算能力與分類討論思想,以及運用數(shù)學(xué)知識解決實際問題的能力. 滿分12分
解:(1)因為擲出1點的概率為,
所以甲盒中有3個球的概率………………………4分
(2)甲、乙、丙3個盒中的球數(shù)依次成等差數(shù)列有以下三種情況:
①甲、乙、丙3個盒中的球數(shù)分別為0、1、2,
此時的概率 ……………………………6分
②甲、乙、丙3個盒中的球數(shù)分別為1、1、1,
此時的概率 ……………………………8分
③甲、乙、丙3個盒中的球數(shù)分別為2、1、0,
此時的概率 ……………………………10分
所以,甲、乙、丙3個盒中的球數(shù)依次成等差數(shù)列的概率…12分
21.本小題主要考查函數(shù)的單調(diào)性、最值等基本知識;考查函數(shù)與方程、數(shù)形結(jié)合、分類與整合等數(shù)學(xué)思想方法;考查運用數(shù)學(xué)知識分析和解決實際問題的能力以及運算能力,滿分12分.
解(Ⅰ)
上單調(diào)遞增,在[-2,2]上單調(diào)遞減,
,……2分
,
…………………………4分
又
……………………………………………………6分
(Ⅱ)已知條件等價于在……………………8分
上為減函數(shù),
且……………………………………10分
上為減函數(shù),
又………………………………………………12分
22.本小題主要考查直線、橢圓、向量等基礎(chǔ)知識,以及應(yīng)用這些知識研究曲線幾何特征
基本方法,考查運算能力和綜合解題能力.滿分14分.
解:(1)當(dāng)時 ,,
消去得: , ………2分
此時ㄓ>0,
設(shè)點坐標(biāo)為 , 點坐標(biāo)為 ,
則有= , 3
= , 4
,∴ ,代入3、4得
消去得
解得,
則所求橢圓C的方程.……………………6分
(2) 當(dāng)2時,橢圓C的方程,………………7分
設(shè)點坐標(biāo)為 , 點坐標(biāo)為,
直線的方程為:,
與的方程: 聯(lián)立得: M點的縱坐標(biāo),
同理可得: ,………………9分
則=
…10分
,
此時ㄓ>0,由 = ,= ,
= ,= ,……………… 12分
則,
……………………13分
(當(dāng)時取等號),
∴的最小值為6. ……………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com