拋物線方程為 所以過拋物線上A.B兩點(diǎn)的切線斜率分別是 查看更多

 

題目列表(包括答案和解析)

已知拋物線C:y2=2px(p>0)上任意一點(diǎn)到焦點(diǎn)F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個(gè)數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個(gè)“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個(gè)“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
16
3
,求側(cè)棱長”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過點(diǎn)A(-
p
2
,0)
的直線交拋物線C:y2=2px(p>0)于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對稱點(diǎn)為R,則直線RQ必過焦點(diǎn)F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

已知拋物線C:y2=ax(a>0),拋物線上一點(diǎn)N(x0, 2
2
) (x0>1)
到拋物線的焦點(diǎn)F的距離是3.
(1)求a的值;
(2)已知?jiǎng)又本l過點(diǎn)P(4,0),交拋物線C于A、B兩點(diǎn).
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在x軸上,且過點(diǎn)(1,2).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個(gè)焦點(diǎn)F1作與x軸不垂直的任意直線l”交橢圓于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M,則
|AB|
|F1M|
為定值,且定值是
10
3
”.命題中涉及了這么幾個(gè)要素:給定的圓錐曲線T,過該圓錐曲線焦點(diǎn)F1的弦AB,AB的垂直平分線與焦點(diǎn)所在的對稱軸的交點(diǎn)M,AB的長度與F1、M兩點(diǎn)間距離的比值.試類比上述命題,寫出一個(gè)關(guān)于拋物線C的類似的正確命題,并加以證明.
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于拋物線的一般性命題(不必證明).

查看答案和解析>>

已知拋物線C:y2=2px(p>0)上任意一點(diǎn)到焦點(diǎn)F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個(gè)數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個(gè)“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個(gè)“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
16
3
,求側(cè)棱長”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過點(diǎn)A(-
p
2
,0)
的直線交拋物線C:y2=2px(p>0)于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對稱點(diǎn)為R,則直線RQ必過焦點(diǎn)F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

已知拋物線C:y2=ax(a>0),拋物線上一點(diǎn)到拋物線的焦點(diǎn)F的距離是3.
(1)求a的值;
(2)已知?jiǎng)又本l過點(diǎn)P(4,0),交拋物線C于A、B兩點(diǎn).
(i)若直線l的斜率為1,求AB的長;
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案