(1)證明:因為是的中點.. 所以. 查看更多

 

題目列表(包括答案和解析)

如圖,長方體中,底面是正方形,的中點,是棱上任意一點。

(Ⅰ)證明: ;

(Ⅱ)如果=2 ,=,, 求 的長。

 【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,設(shè),由,即,解得,即 的長為。

 

查看答案和解析>>

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.

(1)   求證:A1C⊥平面BCDE;

(2)   若M是A1D的中點,求CM與平面A1BE所成角的大。

(3)   線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由

【解析】(1)∵DE∥BC∴又∵

(2)如圖,以C為坐標原點,建立空間直角坐標系C-xyz,

設(shè)平面的法向量為,則,又,,所以,令,則,所以

設(shè)CM與平面所成角為。因為,

所以

所以CM與平面所成角為

 

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點,PE=2EC。

(I)     證明PC平面BED;

(II)   設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運用。

從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。

解法一:因為底面ABCD為菱形,所以BDAC,又

【點評】試題從命題的角度來看,整體上題目與我們平時練習(xí)的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學(xué)生來說就是比較有點難度的,因此最好使用空間直角坐標系解決該問題為好。

 

查看答案和解析>>

如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設(shè)Q為AE的中點,證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問中,作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

查看答案和解析>>

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運用。

(1)證明:因為SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>


同步練習(xí)冊答案