題目列表(包括答案和解析)
在計(jì)算“”時(shí),某同學(xué)學(xué)到了如下一種方法:
先改寫(xiě)第k項(xiàng):由此得
…
相加,得
類(lèi)比上述方法,請(qǐng)你計(jì)算“”,其結(jié)果為
在計(jì)算“”時(shí),某同學(xué)學(xué)到了如下一種方法:先改寫(xiě)第k項(xiàng):
由此得
…………
相加,得
類(lèi)比上述方法,請(qǐng)你計(jì)算“”,
其結(jié)果為
在計(jì)算時(shí),某同學(xué)學(xué)到了如下一種方法:
先改寫(xiě)第K項(xiàng):
由此得
相加,得
類(lèi)比上述方法,請(qǐng)計(jì)算,其結(jié)果為_(kāi)__________.
在計(jì)算“”時(shí),某同學(xué)學(xué)到了如下一種方法:先改寫(xiě)第項(xiàng):,由此得
相加,得
類(lèi)比上述方法,請(qǐng)你計(jì)算“”,其結(jié)果為 ________.
在計(jì)算“”時(shí),某同學(xué)學(xué)到了如下一種方法:
先改寫(xiě)第項(xiàng):,
由此得 ,,¼,,
相加,得
類(lèi)比上述方法,請(qǐng)你計(jì)算“”,
其結(jié)果為 ________
1.3; 2 . -1; 3. -2;4. 5.3 6. 7 .
8. 9. (0,1) 10. 11. .
12. ;13. ;14. ;
15.解:(Ⅰ)由題意知
……………………3分
……………………4分
的夾角
……………………7分
(Ⅱ)
……………………10分
有最小值。
的最小值是……………………14分
16.解:(1)【證明】因?yàn)椤螦BC=90°,AD∥BC,所以AD⊥AB.
而平面PAB⊥平面ABCD,且平面PAB平面ABCD=AB,
所以AD⊥平面PAB, 所以AD⊥PA. ………………3分
同理可得AB⊥PA. ………………5分
由于AB、AD平面ABCD,且ABAD=C,
所以PA⊥平面ABCD. ………………………7分
(2)【解】(方法一)不平行. ………………………9分
證明:假定直線l∥平面ABCD,
由于l平面PCD,且平面PCD平面ABCD=CD, 所以∥CD. ……………… 11分
同理可得l∥AB, 所以AB∥CD. …………………… 13分
這與AB和CD是直角梯形ABCD的兩腰相矛盾,
故假設(shè)錯(cuò)誤,所以直線l與平面ABCD不平行. …………………… 14分
(方法二)因?yàn)樘菪蜛BCD中AD∥BC,
所以直線AB與直線CD相交,設(shè)ABCD=T. …………………… 11分
由TCD,CD平面PCD得T平面PCD.
同理T平面PAB. …………………… 13分
即T為平面PCD與平面PAB的公共點(diǎn),于是PT為平面PCD與平面PAB的交線.
所以直線與平面ABCD不平行. …………………… 14分
17.解:(1)依題意數(shù)列的通項(xiàng)公式是,
故等式即為,
同時(shí)有,
兩式相減可得 ………………………………3分
可得數(shù)列的通項(xiàng)公式是,
知數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列。 ………………………6分
(2)設(shè)等比數(shù)列的首項(xiàng)為,公比為,則,從而有:
,
又,
故 ……………………………9分
,
要使是與無(wú)關(guān)的常數(shù),必需, …………………………11分
即①當(dāng)?shù)缺葦?shù)列的公比時(shí),數(shù)列是等差數(shù)列,其通項(xiàng)公式是;
②當(dāng)?shù)缺葦?shù)列的公比不是2時(shí),數(shù)列不是等差數(shù)列. ………………14分
18.解:(Ⅰ)當(dāng)9天購(gòu)買(mǎi)一次時(shí),該廠用于配料的保管費(fèi)用
P=70+=88(元) ……………………………4分
(Ⅱ)(1)當(dāng)x≤7時(shí)
y=360x+10x+236=370x+236 ………………5分
(2)當(dāng) x>7時(shí)
y=360x+236+70+6[()+()+……+2+1]
= ………………7分
∴ ………………8分
∴設(shè)該廠x天購(gòu)買(mǎi)一次配料平均每天支付的費(fèi)用為f(x)元
………………11分
當(dāng)x≤7時(shí)
當(dāng)且僅當(dāng)x=7時(shí)
f(x)有最小值(元)
當(dāng)x>7時(shí)
=≥393
當(dāng)且僅當(dāng)x=12時(shí)取等號(hào)
∵393<404
∴當(dāng)x=12時(shí) f(x)有最小值393元 ………………16分
19.解:(1)設(shè)橢圓的焦距為
則其右準(zhǔn)線方程為x=,且F1(-c, 0), F2(c, 0). ……………2分
設(shè)M,
則=
. ……………………4分
因?yàn)?sub>,所以,即.
于是,故∠MON為銳角.
所以原點(diǎn)O在圓C外. ………………………7分
(2)因?yàn)闄E圓的離心率為,所以a=
于是M ,且 ………………………9分
MN2=(y1-y2)2=y(tǒng)12+y22-2y1y2.………… 12分
當(dāng)且僅當(dāng) y1=-y2=或y2=-y1=時(shí)取“=”號(hào), ………………… 14分
所以(MN)min=
故所求的橢圓方程是. ………………… 16分
22.解:(Ⅰ),………………………………1分
又,
處的切線方程為
………………………3分
(Ⅱ),
…………………………………………4分
令,
則上單調(diào)遞增,
上存在唯一零點(diǎn),上存在唯一的極值點(diǎn)………6分
取區(qū)間作為起始區(qū)間,用二分法逐次計(jì)算如下
區(qū)間中點(diǎn)坐標(biāo)
中點(diǎn)對(duì)應(yīng)導(dǎo)數(shù)值
取區(qū)間
1
0.6
0.3
由上表可知區(qū)間的長(zhǎng)度為0.3,所以該區(qū)間的中點(diǎn),到區(qū)間端點(diǎn)距離小于0.2,因此可作為誤差不超過(guò)0.2的一個(gè)極值點(diǎn)的相應(yīng)x的值。
取得極值時(shí),相應(yīng)………………………9分
(Ⅲ)由,
即,
,………………………………………12分
令
令
上單調(diào)遞增,
,
因此上單調(diào)遞增,
則,
的取值范圍是
………………………………………16分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com