(2)設(shè)數(shù)列{an}的公比為f(t).作數(shù)列{bn}.使b1=1,bn=f()(n=2,3,4-).求數(shù)列{bn}的通項(xiàng)bn,(3)求和:b1b2-b2b3+b3b4--+b2n-1b2n-b2nb2n+1. 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t為正常數(shù),n=2,3,4…).
(1)求證:{an}為等比數(shù)列;
(2)設(shè){an}公比為f(t),作數(shù)列bn使b1=1,bn=f(
1bn-1
)(n≥2)
,試求bn,并求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)

查看答案和解析>>

設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足關(guān)系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}是公比為f(t),作數(shù)列{bn},使b1=1,bn=f(
1
bn-1
)
(n=2,3,4,…),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1;
(3)若t=-3,設(shè)cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=
1
c1
+
1
c2
+…+
1
cn
,求使k
n•2n+1
(n+1)
≥(7-2n)Tn(n∈N+)恒成立的實(shí)數(shù)k的范圍.

查看答案和解析>>

設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足關(guān)系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,(n∈N*,n≥2),求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)數(shù)列{bn}滿足條件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

設(shè)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足關(guān)系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,(n∈N*,n≥2),求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)數(shù)列{bn}滿足條件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,,3tSn-(2t+3)Sn-1=3t(t為正常數(shù),n=2,3,4…).
(1)求證:{an}為等比數(shù)列;
(2)設(shè){an}公比為f(t),作數(shù)列bn使數(shù)學(xué)公式,試求bn,并求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1(n∈N*)

查看答案和解析>>

難點(diǎn)磁場(chǎng)

解析:(1)由題意,當(dāng)n=1時(shí),有6ec8aac122bd4f6e,S1=a1,

6ec8aac122bd4f6e,解得a1=2.當(dāng)n=2時(shí),有6ec8aac122bd4f6eS2=a1+a2,將a1=2代入,整理得(a2-2)2=16,由a2>0,解得a2=6.當(dāng)n=3時(shí),有6ec8aac122bd4f6e,S3=a1+a2+a3,將a1=2,a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10.故該數(shù)列的前3項(xiàng)為2,6,10.

(2)解法一:由(1)猜想數(shù)列{an}.有通項(xiàng)公式an=4n-2.下面用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式是an=4n-2,(nN*).

①當(dāng)n=1時(shí),因?yàn)?×1-2=2,,又在(1)中已求出a1=2,所以上述結(jié)論成立.

②假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即有ak=4k-2,由題意,有6ec8aac122bd4f6e,將ak=4k-2.代入上式,解得2k=6ec8aac122bd4f6e,得Sk=2k2,由題意,有6ec8aac122bd4f6eSk+1=Sk+ak+1,將Sk=2k2代入得(6ec8aac122bd4f6e)2=2(ak+1+2k2),整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k,所以ak+1=2+4k=4(k+1)-2,即當(dāng)n=k+1時(shí),上述結(jié)論成立.根據(jù)①②,上述結(jié)論對(duì)所有的自然數(shù)nN*成立.

解法二:由題意知6ec8aac122bd4f6e,(nN*).整理得,Sn=6ec8aac122bd4f6e(an+2)2,由此得Sn+1=6ec8aac122bd4f6e(an+1+2)2,∴an+1=Sn+1Sn=6ec8aac122bd4f6e[(an+1+2)2-(an+2)2].整理得(an+1+an)(an+1an-4)=0,由題意知an+1+an≠0,∴an+1an=4,即數(shù)列{an}為等差數(shù)列,其中a1=2,公差d=4.∴an=a1+(n-1)d=2+4(n-1),即通項(xiàng)公式為an=4n-2.

解法三:由已知得6ec8aac122bd4f6e,(nN*)①,所以有6ec8aac122bd4f6e②,由②式得6ec8aac122bd4f6e,整理得Sn+1-26ec8aac122bd4f6e?6ec8aac122bd4f6e+2-Sn=0,解得6ec8aac122bd4f6e,由于數(shù)列{an}為正項(xiàng)數(shù)列,而6ec8aac122bd4f6e,因而6ec8aac122bd4f6e,即{Sn}是以6ec8aac122bd4f6e為首項(xiàng),以6ec8aac122bd4f6e為公差的等差數(shù)列.所以6ec8aac122bd4f6e= 6ec8aac122bd4f6e+(n-1) 6ec8aac122bd4f6e=6ec8aac122bd4f6en,Sn=2n2,

an=6ec8aac122bd4f6ean=4n-2(nN*).

(3)令cn=bn-1,則cn=6ec8aac122bd4f6e

6ec8aac122bd4f6e

殲滅難點(diǎn)訓(xùn)練

一、6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:1+6ec8aac122bd4f6e

2.解析:由題意所有正三角形的邊長(zhǎng)構(gòu)成等比數(shù)列{an},可得an=6ec8aac122bd4f6e,正三角形的內(nèi)切圓構(gòu)成等比數(shù)列{rn},可得rn=6ec8aac122bd4f6ea,?

∴這些圓的周長(zhǎng)之和c=6ec8aac122bd4f6e2π(r1+r2+…+rn)=6ec8aac122bd4f6e a2,

面積之和S=6ec8aac122bd4f6eπ(n2+r22+…+rn2)=6ec8aac122bd4f6ea2

答案:周長(zhǎng)之和6ec8aac122bd4f6eπa,面積之和6ec8aac122bd4f6ea2

二、3.解:(1)可解得6ec8aac122bd4f6e,從而an=2n,有Sn=n2+n,

(2)Tn=2n+n-1.

(3)TnSn=2nn2-1,驗(yàn)證可知,n=1時(shí),T1=S1,n=2時(shí)T2S2n=3時(shí),T3S3;n=4時(shí),T4S4;n=5時(shí),T5S5;n=6時(shí)T6S6.猜想當(dāng)n≥5時(shí),TnSn,即2nn2+1

可用數(shù)學(xué)歸納法證明(略).

4.解:(1)由an+2=2an+1an6ec8aac122bd4f6ean+2an+1=an+1an可知{an}成等差數(shù)列,?

d=6ec8aac122bd4f6e=-2,∴an=10-2n.

(2)由an=10-2n≥0可得n≤5,當(dāng)n≤5時(shí),Sn=-n2+9n,當(dāng)n>5時(shí),Sn=n2-9n+40,故Sn=6ec8aac122bd4f6e

(3)bn=6ec8aac122bd4f6e

6ec8aac122bd4f6e;要使Tn6ec8aac122bd4f6e總成立,需6ec8aac122bd4f6eT1=6ec8aac122bd4f6e成立,即m<8且mZ,故適合條件的m的最大值為7.

5.解:(1)由已知Sn+1=(m+1)-man+1?①,Sn=(m+1)-man②,由①-②,得an+1=manman+1,即(m+1)an+1=man對(duì)任意正整數(shù)n都成立.

m為常數(shù),且m<-1

6ec8aac122bd4f6e,即{6ec8aac122bd4f6e}為等比數(shù)列.

(2)當(dāng)n=1時(shí),a1=m+1-ma1,∴a1=1,從而b1=6ec8aac122bd4f6e.

由(1)知q=f(m)=6ec8aac122bd4f6e,∴bn=f(bn1)=6ec8aac122bd4f6e (nN*,且n≥2)

6ec8aac122bd4f6e,即6ec8aac122bd4f6e,∴{6ec8aac122bd4f6e}為等差數(shù)列.∴6ec8aac122bd4f6e=3+(n-1)=n+2,

6ec8aac122bd4f6e(nN*).

6ec8aac122bd4f6e

6.解:(1)設(shè)數(shù)列{bn}的公差為d,由題意得:6ec8aac122bd4f6e解得b1=1,d=3,

bn=3n-2.

(2)由bn=3n-2,知Sn=loga(1+1)+loga(1+6ec8aac122bd4f6e)+…+loga(1+6ec8aac122bd4f6e)

=loga[(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)],6ec8aac122bd4f6elogabn+1=loga6ec8aac122bd4f6e.

因此要比較Sn6ec8aac122bd4f6elogabn+1的大小,可先比較(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)與6ec8aac122bd4f6e的大小,

n=1時(shí),有(1+1)>6ec8aac122bd4f6e

n=2時(shí),有(1+1)(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e

 由此推測(cè)(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e                                ①

若①式成立,則由對(duì)數(shù)函數(shù)性質(zhì)可判定:

當(dāng)a>1時(shí),Sn6ec8aac122bd4f6elogabn+1,                                                                           ②

當(dāng)0<a<1時(shí),Sn6ec8aac122bd4f6elogabn+1,                                                                     ③

下面用數(shù)學(xué)歸納法證明①式.

(?)當(dāng)n=1時(shí),已驗(yàn)證①式成立.

(?)假設(shè)當(dāng)n=k時(shí)(k≥1),①式成立,即:

6ec8aac122bd4f6e.那么當(dāng)n=k+1時(shí),

6ec8aac122bd4f6e

這就是說(shuō)①式當(dāng)n=k+1時(shí)也成立.

由(?)(?)可知①式對(duì)任何正整數(shù)n都成立.

由此證得:

當(dāng)a>1時(shí),Sn6ec8aac122bd4f6elogabn+1;當(dāng)0<a<1時(shí),Sn6ec8aac122bd4f6elogabn+1?.

7.解:(1)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.

a2=6ec8aac122bd4f6e.

又3tSn-(2t+3)Sn1=3t,                                                                                  ①

3tSn1-(2t+3)Sn2=3t                                                                                      

①-②得3tan-(2t+3)an1=0.

6ec8aac122bd4f6e,n=2,3,4…,所以{an}是一個(gè)首項(xiàng)為1公比為6ec8aac122bd4f6e的等比數(shù)列;

(2)由f(t)= 6ec8aac122bd4f6e=6ec8aac122bd4f6e,得bn=f(6ec8aac122bd4f6e)=6ec8aac122bd4f6e+bn1?.

可見(jiàn){bn}是一個(gè)首項(xiàng)為1,公差為6ec8aac122bd4f6e的等差數(shù)列.

于是bn=1+6ec8aac122bd4f6e(n-1)=6ec8aac122bd4f6e;

(3)由bn=6ec8aac122bd4f6e,可知{b2n1}和{b2n}是首項(xiàng)分別為1和6ec8aac122bd4f6e,公差均為6ec8aac122bd4f6e的等差數(shù)列,于是b2n=6ec8aac122bd4f6e,

b1b2b2b3+b3b4b4b5+…+b2n1b2nb2nb2n+1?

=b2(b1b3)+b4(b3b5)+…+b2n(b2n1b2n+1)

=-6ec8aac122bd4f6e (b2+b4+…+b2n)=-6ec8aac122bd4f6e?6ec8aac122bd4f6en(6ec8aac122bd4f6e+6ec8aac122bd4f6e)=-6ec8aac122bd4f6e (2n2+3n)


同步練習(xí)冊(cè)答案