題目列表(包括答案和解析)
從集合{0,1,2,3,5,7,11}中任取3個(gè)元素分別作為直線方程Ax+By+C=0中的A、B、C,所得的經(jīng)過坐標(biāo)原點(diǎn)的直線有_________條(用數(shù)值表示).
從集合{0,1,2,3,5,7,11}中任取3個(gè)元素分別作為直線方程Αx+By+C=0中的Α、B、C,所得的經(jīng)過坐標(biāo)原點(diǎn)的直線有________條(結(jié)果用數(shù)值表示)
從集合{0,1,2,3,5,7,11}中任取3個(gè)元素分別作為直線方程Ax+By+C=0中的系數(shù)A、B、C,所得經(jīng)過坐標(biāo)原點(diǎn)的直線共有________條(用數(shù)值表示).
難點(diǎn)磁場(chǎng)
解:(間接法):任取三張卡片可以組成不同三位數(shù)C?23?A(個(gè)),其中0在百位的有C?22?A (個(gè)),這是不合題意的,故共有不同三位數(shù):C?23?A-C?22?A=432(個(gè)).
殲滅難點(diǎn)訓(xùn)練
一、1.解析:因?yàn)橹本過原點(diǎn),所以C=0,從1,2,3,5,7,11這6個(gè)數(shù)中任取2個(gè)作為A、B兩數(shù)的順序不同,表示的直線不同,所以直線的條數(shù)為A=30.
答案:30
2.解析:2n個(gè)等分點(diǎn)可作出n條直徑,從中任選一條直徑共有C種方法;再?gòu)囊韵碌?2n-2)個(gè)等分點(diǎn)中任選一個(gè)點(diǎn),共有C種方法,根據(jù)乘法原理:直角三角形的個(gè)數(shù)為:C?C=2n(n-1)個(gè).
答案:2n(n-1)
二、3.解:出牌的方法可分為以下幾類:
因此,共有不同的出牌方法A+A+A+AA+A+CA=860種.
4.解:由圖形特征分析,a>0,開口向上,坐標(biāo)原點(diǎn)在內(nèi)部f(0)=c<0;a<0,開口向下,原點(diǎn)在內(nèi)部f(0)=c>0,所以對(duì)于拋物線y=ax2+bx+c來講,原點(diǎn)在其內(nèi)部af(0)=ac<0,則確定拋物線時(shí),可先定一正一負(fù)的a和c,再確定b,故滿足題設(shè)的拋物線共有CCAA=144條.
5.解:(1)利用元素分析法,甲為特殊元素,故先安排甲左、右、中共三個(gè)位置可供甲選擇.有A種,其余6人全排列,有A種.由乘法原理得AA=2160種.
(2)位置分析法.先排最右邊,除去甲外,有A種,余下的6個(gè)位置全排有A種,但應(yīng)剔除乙在最右邊的排法數(shù)AA種.則符合條件的排法共有AA-AA=3720種.
(3)捆綁法.將男生看成一個(gè)整體,進(jìn)行全排列.再與其他元素進(jìn)行全排列.共有AA=720種.
(4)插空法.先排好男生,然后將女生插入其中的四個(gè)空位,共有AA=144種.
(5)插空法.先排女生,然后在空位中插入男生,共有AA=1440種.
(6)定序排列.第一步,設(shè)固定甲、乙、丙從左至右順序的排列總數(shù)為N,第二步,對(duì)甲、乙、丙進(jìn)行全排列,則為七個(gè)人的全排列,因此A=N×A,∴N== 840種.?
(8)從除甲、乙以外的5人中選3人排在甲、乙中間的排法有A種,甲、乙和其余2人排成一排且甲、乙相鄰的排法有AA.最后再把選出的3人的排列插入到甲、乙之間即可.共有A×A×A=720種.
6.解:首先按每個(gè)盒子的編號(hào)放入1個(gè)、2個(gè)、3個(gè)小球,然后將剩余的14個(gè)小球排成一排,如圖,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15個(gè)空檔,其中“O”表示小球,“|”表示空檔.將求小球裝入盒中的方案數(shù),可轉(zhuǎn)化為將三個(gè)小盒插入15個(gè)空檔的排列數(shù).對(duì)應(yīng)關(guān)系是:以插入兩個(gè)空檔的小盒之間的“O”個(gè)數(shù),表示右側(cè)空檔上的小盒所裝有小球數(shù).最左側(cè)的空檔可以同時(shí)插入兩個(gè)小盒.而其余空檔只可插入一個(gè)小盒,最右側(cè)空檔必插入小盒,于是,若有兩個(gè)小盒插入最左側(cè)空檔,有C種;若恰有一個(gè)小盒插入最左側(cè)空檔,有種;若沒有小盒插入最左側(cè)空檔,有C種.由加法原理,有N==120種排列方案,即有120種放法.
7.解:按排列中相鄰問題處理.(1)(4)或(2)(4).可以涂相同的顏色.分類:若(1)(4)同色,有A種,若(2)(4)同色,有A種,若(1)(2)(3)(4)均不同色,有A種.由加法原理,共有N=2A+A=240種.
8.解:每人隨意值兩天,共有CCC個(gè);甲必值周一,有CCC個(gè);乙必值周六,有CCC個(gè);甲必值周一且乙必值周六,有CCC個(gè).所以每人值兩天,且甲必不值周一、乙必不值周六的值班表數(shù),有N=CCC-2CCC+ CCC=90-2×5×6+12=42個(gè).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com