求證任何一個實(shí)系數(shù)一元三次方程a0x3+a1x2+a2x+a3=0(a0,a1,a2,a3∈R,a0≠0)至少有一個實(shí)數(shù)根. 查看更多

 

題目列表(包括答案和解析)

求證:任何一個實(shí)系數(shù)一元三次方程a0x3+a1x2+a2x+a3=0(a0,a1,a2,a3∈R,a0≠0)至少有一個實(shí)數(shù)根.

查看答案和解析>>

求證:任何一個實(shí)系數(shù)一元三次方程a0x3+a1x2+a2x+a3=0(a0,a1,a2,a3∈R,a0≠0)至少有一個實(shí)數(shù)根.

查看答案和解析>>

求證:任何一個實(shí)系數(shù)一元三次方程a0x3+a1x2+a2x+a3=0(a0,a1,a2,a3∈R,a0≠0)至少有一個實(shí)數(shù)根.

查看答案和解析>>

難點(diǎn)磁場

解:(1)6ec8aac122bd4f6ef(x)=3, 6ec8aac122bd4f6ef(x)=-1,所以6ec8aac122bd4f6ef(x)不存在,所以f(x)在x=-1處不連續(xù),

6ec8aac122bd4f6ef(x)=f(-1)=-1, 6ec8aac122bd4f6ef(x)≠f(-1),所以f(x)在x=-1處右連續(xù),左不連續(xù)

6ec8aac122bd4f6ef(x)=3=f(1), 6ec8aac122bd4f6ef(x)不存在,所以6ec8aac122bd4f6ef(x)不存在,所以f(x)在x=1不連續(xù),但左連續(xù),右不連續(xù).

6ec8aac122bd4f6ef(x)=f(0)=0,所以f(x)在x=0處連續(xù).

(2)f(x)中,區(qū)間(-∞,-1),[-1,1],(1,5]上的三個函數(shù)都是初等函數(shù),因此f(x)除不連續(xù)點(diǎn)x=±1外,再也無不連續(xù)點(diǎn),所以f(x)的連續(xù)區(qū)間是(-∞,-1),[-1,1]和(1,56ec8aac122bd4f6e.

殲滅難點(diǎn)訓(xùn)練

一、1.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:A

2.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

f(x)在x=1點(diǎn)不連續(xù),顯知f(x)在(0,1)和(1,2)連續(xù).

答案:C

二、3.解析:利用函數(shù)的連續(xù)性,即6ec8aac122bd4f6e,

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

三、5.解:f(x)=6ec8aac122bd4f6e

(1) 6ec8aac122bd4f6ef(x)=-1, 6ec8aac122bd4f6ef(x)=1,所以6ec8aac122bd4f6ef(x)不存在,故f(x)在x=0處不連續(xù).

(2)f(x)在(-∞,+∞)上除x=0外,再無間斷點(diǎn),由(1)知f(x)在x=0處右連續(xù),所以f(x)在[

-1,0]上是不連續(xù)函數(shù),在[0,1]上是連續(xù)函數(shù).

6.解:(1)f(-x)=6ec8aac122bd4f6e

(2)要使f(x)在(-∞,+∞)內(nèi)處處連續(xù),只要f(x)在x=0連續(xù),6ec8aac122bd4f6ef(x)

= 6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e

6ec8aac122bd4f6ef(x)=6ec8aac122bd4f6e(a+bx)=a,因?yàn)橐?i>f(x)在x=0處連續(xù),只要6ec8aac122bd4f6e f(x)= 6ec8aac122bd4f6ef(x)

= 6ec8aac122bd4f6ef(x)=f(0),所以a=6ec8aac122bd4f6e

7.證明:設(shè)f(x)=a0x3+a1x2+a2x+a3,函數(shù)f(x)在(-∞,+∞)連續(xù),且x→+∞時,f(x)→+∞;x→-∞時,f(x)→-∞,所以必存在a∈(-∞,+∞),b∈(-∞,?+∞),使f(a)?f(b)<0,所以f(x)的圖象至少在(a,b)上穿過x軸一次,即f(x)=0至少有一實(shí)根.

8.解:不連續(xù)點(diǎn)是x=1,連續(xù)區(qū)間是(-∞,1),(1,+∞)

 

 


同步練習(xí)冊答案