⒉ 第Ⅱ卷所有題目的答案.使用0.5毫米的黑色中性筆書寫.字體工整.筆跡清楚.⒊ 請按照題號在各題的答題區(qū)域內(nèi)作答.超出答題區(qū)域書寫的答案無效. 1,3,5 查看更多

 

題目列表(包括答案和解析)

答案使用0.5毫米的黑色中性(簽字)筆或碳素筆書寫,字體工整、筆跡清楚;

查看答案和解析>>

(08年山東卷)(本小題滿分12分)

將數(shù)列中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:

 

    

      

記表中的第一列數(shù)構(gòu)成的數(shù)列為為數(shù)列的前項和,且滿足

(Ⅰ)證明數(shù)列成等差數(shù)列,并求數(shù)列的通項公式;

(Ⅱ)上表中,若從第三行起,第一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個正數(shù).當(dāng)時,求上表中第行所有項的和.

查看答案和解析>>

選擇題每小題選出答案后,用2B鉛筆將答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號,答在試題卷上無效。

查看答案和解析>>

每小題選出答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號,不能答在試題卷上。

一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,選出符合題目要求的一項.

1.設(shè)全集,,則=

(A)          (B)      (C)       (D)

2.已知圓的方程為,那么下列直線中經(jīng)過圓心的直線方程為

(A)                  (B)

(C)                  (D)

查看答案和解析>>

(2013•揭陽一模)根據(jù)公安部最新修訂的《機動車駕駛證申領(lǐng)和使用規(guī)定》:每位駕駛證申領(lǐng)者必須通過《科目一》(理論科目)、《綜合科》(駕駛技能加科目一的部分理論)的考試.已知李先生已通過《科目一》的考試,且《科目一》的成績不受《綜合科》的影響,《綜合科》三年內(nèi)有5次預(yù)約考試的機會,一旦某次考試通過,便可領(lǐng)取駕駛證,不再參加以后的考試,否則就一直考到第5次為止.設(shè)李先生《綜合科》每次參加考試通過的概率依次為0.5,0.6,0.7,0.8,0.9.
(1)求在三年內(nèi)李先生參加駕駛證考試次數(shù)ξ的分布列和數(shù)學(xué)期望;
(2)求李先生在三年內(nèi)領(lǐng)到駕駛證的概率.

查看答案和解析>>

    2009.3

一、選擇題

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空題

      • <menu id="71mdf"><s id="71mdf"></s></menu>
          <table id="71mdf"></table>

          1,3,5

          三、解答題

          (17)解:(Ⅰ)-             ---------------------------2分

          高三年級人數(shù)為-------------------------3分

          現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,應(yīng)在高三年級抽取的人數(shù)為

          (人).                       --------------------------------------6分

          (Ⅱ)設(shè)“高三年級女生比男生多”為事件,高三年級女生、男生數(shù)記為.

          由(Ⅰ)知

          則基本事件空間包含的基本事件有

          共11個,     ------------------------------9分

          事件包含的基本事件有

          共5個   

                          --------------------------------------------------------------11分

          答:高三年級女生比男生多的概率為.  …………………………………………12分

          (18)解:(Ⅰ)  …………2分

          中,由于,

                                                  …………3分

          ,

                                 

          ,所以,而,因此.…………6分

             (Ⅱ)由,

          由正弦定理得                                …………8分

          ,

          ,由(Ⅰ)知,所以    …………10分

          由余弦弦定理得 ,     …………11分

          ,

                                                         …………12分

          (19)(Ⅰ)證明:∵分別為、的中點,∴.

               又∵平面平面

          平面                                         …………4分

          (Ⅱ)∵,∴平面.

          又∵,∴平面.

          平面,∴平面平面.               …………8分

          (Ⅲ)∵平面,∴是三棱錐的高.

          在Rt△中,.

              在Rt△中,.

           ∵的中點,

          ,

          .        ………………12分

          (20)解:(Ⅰ)依題意得

                                       …………2分

           解得,                                             …………4分

          .       …………6分

             (Ⅱ)由已知得,                  …………8分

                                                                   ………………12分

          (21)解:(Ⅰ)

                令=0,得                        ………2分

          因為,所以可得下表:

          0

          +

          0

          -

          極大

                                                                    ………………4分

          因此必為最大值,∴,因此,

              

              即,∴,

           ∴                                       ……………6分

          (Ⅱ)∵,∴等價于, ………8分

           令,則問題就是上恒成立時,求實數(shù)的取值范圍,為此只需,即,                 …………10分

          解得,所以所求實數(shù)的取值范圍是[0,1].            ………………12分

          (22)解:(Ⅰ)由得,,

          所以直線過定點(3,0),即.                       …………………2分

           設(shè)橢圓的方程為,

          ,解得

          所以橢圓的方程為.                    ……………………5分

          (Ⅱ)因為點在橢圓上運動,所以,      ………………6分

          從而圓心到直線的距離

          所以直線與圓恒相交.                             ……………………9分

          又直線被圓截得的弦長

          ,       …………12分

          由于,所以,則,

          即直線被圓截得的弦長的取值范圍是.  …………………14分

           


          同步練習(xí)冊答案