(Ⅰ)求函數(shù)的解析式, 查看更多

 

題目列表(包括答案和解析)

求函數(shù)的解析式:
(1)求一次函數(shù)f(x),使f[f(x)]=9x+1;
(2)已知f(x-2)=x2-3x+1,求f(x).

查看答案和解析>>

求函數(shù)的解析式:
(1)求一次函數(shù)f(x),使f[f(x)]=9x+1;
(2)已知f(x-2)=x2-3x+1,求f(x).

查看答案和解析>>

求函數(shù)的解析式:
(1)求一次函數(shù)f(x),使f[f(x)]=9x+1;
(2)已知f(x-2)=x2-3x+1,求f(x).

查看答案和解析>>

已知

   (1)求函數(shù)的解析式;

   (2)當(dāng)的最小值是—4,求此時函數(shù)的最大值,并求出相應(yīng)的x的值。

查看答案和解析>>


(1)函數(shù)的解析式.
(2)求出函數(shù)的單調(diào)遞增區(qū)間與對稱軸方程,對稱中心坐標(biāo);
(3)當(dāng)時,求函數(shù)的值域

查看答案和解析>>

    2009.3

一、選擇題

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空題

<dd id="2un2z"></dd><var id="2un2z"><pre id="2un2z"><sup id="2un2z"></sup></pre></var>
      • 1,3,5

        三、解答題

        (17)解:(Ⅰ)-             ---------------------------2分

        高三年級人數(shù)為-------------------------3分

        現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,應(yīng)在高三年級抽取的人數(shù)為

        (人).                       --------------------------------------6分

        (Ⅱ)設(shè)“高三年級女生比男生多”為事件,高三年級女生、男生數(shù)記為.

        由(Ⅰ)知

        則基本事件空間包含的基本事件有

        共11個,     ------------------------------9分

        事件包含的基本事件有

        共5個   

                        --------------------------------------------------------------11分

        答:高三年級女生比男生多的概率為.  …………………………………………12分

        (18)解:(Ⅰ)  …………2分

        中,由于,

                                                …………3分

        ,

                               

        ,所以,而,因此.…………6分

           (Ⅱ)由,

        由正弦定理得                                …………8分

        ,

        ,由(Ⅰ)知,所以    …………10分

        由余弦弦定理得 ,     …………11分

        ,

                                                       …………12分

        (19)(Ⅰ)證明:∵、分別為的中點(diǎn),∴.

             又∵平面平面

        平面                                         …………4分

        (Ⅱ)∵,,∴平面.

        又∵,∴平面.

        平面,∴平面平面.               …………8分

        (Ⅲ)∵平面,∴是三棱錐的高.

        在Rt△中,.

            在Rt△中,.

         ∵的中點(diǎn),

        ,

        .        ………………12分

        (20)解:(Ⅰ)依題意得

                                     …………2分

         解得,                                             …………4分

        .       …………6分

           (Ⅱ)由已知得,                  …………8分

                                                                 ………………12分

        (21)解:(Ⅰ)

              令=0,得                        ………2分

        因?yàn)?sub>,所以可得下表:

        0

        +

        0

        -

        極大

                                                                  ………………4分

        因此必為最大值,∴,因此,

             ,

            即,∴,

         ∴                                       ……………6分

        (Ⅱ)∵,∴等價于, ………8分

         令,則問題就是上恒成立時,求實(shí)數(shù)的取值范圍,為此只需,即,                 …………10分

        解得,所以所求實(shí)數(shù)的取值范圍是[0,1].            ………………12分

        (22)解:(Ⅰ)由得,

        所以直線過定點(diǎn)(3,0),即.                       …………………2分

         設(shè)橢圓的方程為,

        ,解得,

        所以橢圓的方程為.                    ……………………5分

        (Ⅱ)因?yàn)辄c(diǎn)在橢圓上運(yùn)動,所以,      ………………6分

        從而圓心到直線的距離

        所以直線與圓恒相交.                             ……………………9分

        又直線被圓截得的弦長

        ,       …………12分

        由于,所以,則,

        即直線被圓截得的弦長的取值范圍是.  …………………14分

         


        同步練習(xí)冊答案
        <code id="2un2z"><label id="2un2z"><ul id="2un2z"></ul></label></code>