(II)隨機(jī)變量的數(shù)學(xué)期望 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)

為振興旅游業(yè),四川省2009年面向國(guó)內(nèi)發(fā)行總量為2000萬(wàn)張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡(jiǎn)稱(chēng)金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡(jiǎn)稱(chēng)銀卡)。某旅游公司組織了一個(gè)有36名游客的旅游團(tuán)到四川名勝旅游,其中是省外游客,其余是省內(nèi)游客。在省外游客中有持金卡,在省內(nèi)游客中有持銀卡。

(I)在該團(tuán)中隨機(jī)采訪(fǎng)3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;

(II)在該團(tuán)的省內(nèi)游客中隨機(jī)采訪(fǎng)3名游客,設(shè)其中持銀卡人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望。

查看答案和解析>>

(本小題滿(mǎn)分13分)某企業(yè)準(zhǔn)備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對(duì)他們的某項(xiàng)專(zhuān)業(yè)技能進(jìn)行測(cè)試。在待測(cè)試的某一個(gè)小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機(jī)選2人參加測(cè)試,其中恰為一男一女的概率為  (I)求該小組中女生的人數(shù);   (II)假設(shè)此項(xiàng)專(zhuān)業(yè)技能測(cè)試對(duì)該小組的學(xué)生而言,每個(gè)女生通過(guò)的概率均為,每個(gè)男生通過(guò)的概率均為,現(xiàn)對(duì)該小組中男生甲、男生乙和女生丙3個(gè)人進(jìn)行測(cè)試,記這3人中通過(guò)測(cè)試的人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

(本小題滿(mǎn)分13分

某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿(mǎn)100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤(pán)一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)2次,所獲得的返券金額是兩次金額之和.

   (I)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;

   (II)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為X(元).

        求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿(mǎn)分12分)

在一次籃球練習(xí)課中,規(guī)定每人最多投籃5次,若投中2次就稱(chēng)為“通過(guò)”,若投中3次就稱(chēng)為“優(yōu)秀”并停止投籃.已知甲每次投籃投中的概率是

(I)求甲恰好投籃3次就通過(guò)的概率;

(II)設(shè)甲投籃投中的次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望E

查看答案和解析>>

(本小題12分)

2009年10月,某家具城舉行促銷(xiāo)活動(dòng),促銷(xiāo)方案是:顧客每消費(fèi)1000元,便可以獲得獎(jiǎng)券一張(不足1000元不能獲得獎(jiǎng)券),每張獎(jiǎng)券中獎(jiǎng)的概率為,若中獎(jiǎng),則家具城返還顧客現(xiàn)金200元。某顧客購(gòu)買(mǎi)一張價(jià)格為3400元的餐桌,得到3張獎(jiǎng)券,記隨機(jī)變量表示家具城返還給顧客現(xiàn)金數(shù)。

   (I)求家具城恰好返還給顧客現(xiàn)金200元的概率;

   (II)求家具城返還給顧客現(xiàn)金的分布列與數(shù)學(xué)期望;

查看答案和解析>>

一、選擇題(每小題5分,共計(jì)60分)

ABADD  CACAC  AB

二、填空題(每小題4分,共計(jì)16分)

(13)4;(14);(15);(16)①④.

三、解答題:

17.解:(本小題滿(mǎn)分12分)

(Ⅰ) 由題意

   

          

          

    由題意,函數(shù)周期為3,又>0,;

   (Ⅱ) 由(Ⅰ)知

      

      

又x的減區(qū)間是.

(18) (本小題滿(mǎn)分12分)

解:(1)隨機(jī)變量的所有可能取值為

所以隨機(jī)變量的分布列為

0

1

2

3

4

5

   (2)∵隨機(jī)變量

        ∴

19. (本小題滿(mǎn)分12分)

解:(Ⅰ)∵   底面ABCD是正方形,

∴AB⊥BC,

又平面PBC⊥底面ABCD  

平面PBC ∩  平面ABCD=BC

∴AB  ⊥平面PBC

又PC平面PBC

∴AB  ⊥CP  ………………3分

(Ⅱ)解法一:體積法.由題意,面,

 

中點(diǎn),則

.

再取中點(diǎn),則   ………………5分

設(shè)點(diǎn)到平面的距離為,則由

.                   ………………7分

解法二:

中點(diǎn),再取中點(diǎn)

過(guò)點(diǎn),則

中,

∴點(diǎn)到平面的距離為。  ………………7分

解法三:向量法(略)

(Ⅲ)

就是二面角的平面角.

∴二面角的大小為45°.   ………………12分

方法二:向量法(略).

(20)(本小題滿(mǎn)分12分)

解:(Ⅰ)方法一:∵

.           

設(shè)直線(xiàn)

并設(shè)l與g(x)=x2相切于點(diǎn)M()

  ∴2

代入直線(xiàn)l方程解得p=1或p=3.

                             

方法二:  

將直線(xiàn)方程l代入

解得p=1或p=3 .                                      

(Ⅱ)∵,                                

①要使為單調(diào)增函數(shù),須恒成立,

恒成立,即恒成立,

,所以當(dāng)時(shí),為單調(diào)增函數(shù);   …………6分

②要使為單調(diào)減函數(shù),須恒成立,

恒成立,即恒成立,

,所以當(dāng)時(shí),為單調(diào)減函數(shù).                

綜上,若為單調(diào)函數(shù),則的取值范圍為.………8分

 

(21) (本小題滿(mǎn)分12分)

(1)∵直線(xiàn)的方向向量為

∴直線(xiàn)的斜率為,又∵直線(xiàn)過(guò)點(diǎn)

∴直線(xiàn)的方程為

,∴橢圓的焦點(diǎn)為直線(xiàn)軸的交點(diǎn)

∴橢圓的焦點(diǎn)為

,又∵

,∴

∴橢圓方程為  

(2)設(shè)直線(xiàn)MN的方程為

,

設(shè)坐標(biāo)分別為

   (1)    (2)        

>0

,

,顯然,且

代入(1) (2),得

,得

,即

解得.

 (22) (本小題滿(mǎn)分14分)

(1)  解:過(guò)的直線(xiàn)方程為

聯(lián)立方程消去

(2)

是等比數(shù)列

  ,;

(III)由(II)知,,要使恒成立由=>0恒成立,

即(-1)nλ>-(n1恒成立.

?。當(dāng)n為奇數(shù)時(shí),即λ<(n1恒成立.

又(n1的最小值為1.∴λ<1.                                                              10分

?。當(dāng)n為偶數(shù)時(shí),即λ>-(n-1恒成立,

又-(n1的最大值為-,∴λ>-.                                                 11分

即-<λ<1,又λ≠0,λ為整數(shù),

λ=-1,使得對(duì)任意n∈N*,都有                                                                                    


同步練習(xí)冊(cè)答案