(I)建立與的關(guān)系式, 查看更多

 

題目列表(包括答案和解析)

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為
(I)求矩陣A;
(II)求曲線(xiàn)x2+y2=1在矩陣A的變換下得到的新曲線(xiàn)方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C1的參數(shù)方程為為參數(shù)),C2的參數(shù)方程為為參數(shù))
(I)若將曲線(xiàn)C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半(縱坐標(biāo)不變),分別得到曲線(xiàn)C′1和C′2,求出曲線(xiàn)C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C′2垂直的直線(xiàn)的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線(xiàn)x2+y2=1在矩陣A的變換下得到的新曲線(xiàn)方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線(xiàn)C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半(縱坐標(biāo)不變),分別得到曲線(xiàn)C′1和C′2,求出曲線(xiàn)C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C′2垂直的直線(xiàn)的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為e1=
1
0
e2=
0
1

(I)求矩陣A;
(II)求曲線(xiàn)x2+y2=1在矩陣A的變換下得到的新曲線(xiàn)方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C1的參數(shù)方程為
x=2sinθ
y=cosθ
為參數(shù)),C2的參數(shù)方程為
x=2t
y=t+1
(t
為參數(shù))
(I)若將曲線(xiàn)C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半(縱坐標(biāo)不變),分別得到曲線(xiàn)C′1和C′2,求出曲線(xiàn)C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C′2垂直的直線(xiàn)的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為5元,銷(xiāo)售單價(jià)與日均銷(xiāo)售量的關(guān)系如下表所示:
銷(xiāo)售單價(jià)/元6789101112
日均銷(xiāo)售量/桶480440400360320280240
(I)建立利潤(rùn)關(guān)于銷(xiāo)售單價(jià)的函數(shù)解析式;
(II)這個(gè)經(jīng)營(yíng)部怎樣定價(jià)才能獲得最大利潤(rùn).

查看答案和解析>>

某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為5元,銷(xiāo)售單價(jià)與日均銷(xiāo)售量的關(guān)系如下表所示:
銷(xiāo)售單價(jià)/元 6 7 8 9 10 11 12
日均銷(xiāo)售量/桶 480 440 400 360 320 280 240
(I)建立利潤(rùn)關(guān)于銷(xiāo)售單價(jià)的函數(shù)解析式;
(II)這個(gè)經(jīng)營(yíng)部怎樣定價(jià)才能獲得最大利潤(rùn).

查看答案和解析>>

一.             選擇題(每小題5分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

A

B

D

C

D

B

C

B

C

A

 

二.             填空題(每小題5分)

11.       12。     13。-1       14。       15。

三.             解答題

……………2分

且2R=,由正弦定理得:

化簡(jiǎn)得:                       ……………4分

由余弦定理:

……………11分

所以,……………12分

17.解:(I)記事件A=“該單位所派的選手都是男職工” ……………1分

則P(A)=         ……………3分

(II)記事件B=“該單位男職工、女職工選手參加比賽” ……………4分

則P(B)=……………7分

(III)設(shè)該單位至少有一名選手獲獎(jiǎng)的概率為P,則

……………12分

18.(解法一)(I)取AB的中點(diǎn)為Q,連接PQ,則,所以,為AC與BD所成角……………2分

      

又CD=BD=1,,而PQ=1,DQ=1

……………4分

 

(II)過(guò)D作,連接CR,,

……………6分

,

……………8分

……………9分

(解法二)(I)如圖,以D為坐標(biāo)原點(diǎn),DB、AD、DC所在直線(xiàn)分別為x,y,z軸建立直角坐標(biāo)系。則A(),C(0,0,1),B(1,0,0),P(),D(0,0,0)

 

,……2分

所以,異面直線(xiàn)AC與BD所成角的余弦值為……………4分

(II)面DAB的一個(gè)法向量為………5分

設(shè)面ABC的一個(gè)法向量,則

,取,……………7分

……………8分

…………9分

(III)不存在。若存在S使得AC,則,與(I)矛盾。故不存在…12分

19.解:(I)在區(qū)間上遞減,其導(dǎo)函數(shù)……………1分

……………4分

是函數(shù)在區(qū)間上遞減的必要而不充分的條件……………5分

(II)

      ……………6分

當(dāng)a>0時(shí),函數(shù)在()上遞增,在上遞減,在上遞增,故有

……………9分

當(dāng)a〈0時(shí),函數(shù)上遞增,只要

,則…………11分

所以上遞增,又

不能恒成立。

故所求的a的取值范圍為……………12分

20.解:(I)由條件,M到F(1,0)的距離等于到直線(xiàn) x= -1的距離,所以,曲線(xiàn)C是以F為焦點(diǎn)、直線(xiàn) x= -1為準(zhǔn)線(xiàn)的拋物線(xiàn),其方程為……………3分

(II)設(shè),代入得:……………5分

由韋達(dá)定理

,

……………6分

,只要將A點(diǎn)坐標(biāo)中的換成,得……7分

 

……………8分

所以,最小時(shí),弦PQ、RS所在直線(xiàn)的方程為,

……………9分

(III),即A、T、B三點(diǎn)共線(xiàn)。

是否存在一定點(diǎn)T,使得,即探求直線(xiàn)AB是否過(guò)定點(diǎn)。

由(II)知,直線(xiàn)AB的方程為………10分

,直線(xiàn)AB過(guò)定點(diǎn)(3,0).……………12分

故存在一定點(diǎn)T(3,0),使得……………13分

21.解:(I)因?yàn)榍(xiàn)在處的切線(xiàn)與平行

……………4分

   , 

(III)。由(II)知:=

,從而……………11分

,

 


同步練習(xí)冊(cè)答案