M在曲線C上.P.Q是直線與曲線C的交點(diǎn).設(shè) 查看更多

 

題目列表(包括答案和解析)

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
8
+
y2
4
=1
有公共焦點(diǎn),且以拋物線y2=2x的準(zhǔn)線為雙曲線C的一條準(zhǔn)線.動(dòng)直線l過雙曲線C的右焦點(diǎn)F且與雙曲線的右支交于P、Q兩點(diǎn).
(1)求雙曲線C的方程;
(2)無論直線l繞點(diǎn)F怎樣轉(zhuǎn)動(dòng),在雙曲線C上是否總存在定點(diǎn)M,使MP⊥MQ恒成立?若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

(12分)已知雙曲線C:,                

(1) 求雙曲線C的漸近線方程;

(2) 已知點(diǎn)M的坐標(biāo)為(0,1).設(shè)P是雙曲線C上的點(diǎn),Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn).記

,求λ的取值范圍;

(3) 已知點(diǎn)D、E、M的坐標(biāo)分別為(-2,-1)、(2,-1)、(0,1),P為雙曲線C上在第一象限內(nèi)的點(diǎn).記l為經(jīng)過原點(diǎn)與點(diǎn)P的直線,s為△DEM截直線l所得線段的長(zhǎng).試將s表示為直線l的斜率k的函數(shù).

 

查看答案和解析>>

已知雙曲線與橢圓有公共焦點(diǎn),且以拋物線y2=2x的準(zhǔn)線為雙曲線C的一條準(zhǔn)線.動(dòng)直線l過雙曲線C的右焦點(diǎn)F且與雙曲線的右支交于P、Q兩點(diǎn).
(1)求雙曲線C的方程;
(2)無論直線l繞點(diǎn)F怎樣轉(zhuǎn)動(dòng),在雙曲線C上是否總存在定點(diǎn)M,使MP⊥MQ恒成立?若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
過點(diǎn)(
3
,
2
2
)
,它的離心率為
6
2
,P、Q分別在雙曲線的兩條漸近線上,M是線段PQ中點(diǎn),|PQ|=2
2

(Ⅰ)求雙曲線及其漸近線方程;
(Ⅱ)求點(diǎn)M的軌跡C的方程;
(Ⅲ)過C左焦點(diǎn)F1的直線l與C相交于點(diǎn)A、B,F(xiàn)2為C的右焦點(diǎn),求△ABF2面積最大時(shí)
F2A
F2B
的值.

查看答案和解析>>

設(shè)
i
、
j
為直角坐標(biāo)平面內(nèi)x、y軸正方向上的單位向量,若向量
p
=(x+m)
i
+y
j
q
=(x-m)
i
+y
j
,(x,y∈R,m≥2),且|
p
|-|
q
|=4

(1)求動(dòng)點(diǎn)M(x,y)的軌跡方程?并指出方程所表示的曲線;
(2)已知點(diǎn)A(0,1},設(shè)直線l:y=
1
2
x-3與點(diǎn)M的軌跡交于B、C兩點(diǎn),問是否存在實(shí)數(shù)m,使得
AB
AC
=
9
2
?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案