. 當, 不合題意.15分 查看更多

 

題目列表(包括答案和解析)

(本題滿分15分)設橢圓,直線過橢圓左焦點且不與軸重合,與橢圓交于,當軸垂直時,,為橢圓的右焦點,為橢圓上任意一點,若面積的最大值為

(1)求橢圓的方程;

(2)直線繞著旋轉,與圓交于兩點,若,求的面積的取值范圍。

 

查看答案和解析>>

(本題滿分15分)設橢圓,直線過橢圓左焦點且不與軸重合,與橢圓交于,當軸垂直時,,為橢圓的右焦點,為橢圓上任意一點,若面積的最大值為。

(1)求橢圓的方程;

(2)直線繞著旋轉,與圓交于兩點,若,求的面積的取值范圍。

 

查看答案和解析>>

已知函數 R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數a的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調遞增,

.                  ……10分

(2)當時,令,對稱軸,

上單調遞增,又    

① 當,即時,上恒成立,

所以單調遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習冊答案