A. 1 B. 2 C. -1 D. 2-1 查看更多

 

題目列表(包括答案和解析)

圖2-1為某旅游區(qū)各景點的分布圖,圖中一支箭頭表示一段有方向的路,試計算順著箭頭方向,從AH有幾條不同的旅游路線可走( 。

                          圖2-1

A.15                     B.16            C.17                   D.18

查看答案和解析>>

圖2-1為某旅游區(qū)各景點的分布圖,圖中一支箭頭表示一段有方向的路,試計算順著箭頭方向,從AH有幾條不同的旅游路線可走( 。

圖2-1

A.15             B.16            C.17            D.18

查看答案和解析>>

2-2+2-2k等于

A.2-2k                                                              B.2-(2k-1)

C.-2-(2k+1)                                                     D.2

查看答案和解析>>

 a∈{1,2,3},b∈{3,4,5,6,7,8},r∈{1,2,3},則方程(xa)2+(yb)2r2所表示的圓共有(    )

A.12個               B.18個               C.36個              D. 54個

 

查看答案和解析>>

a∈{1,2,3},b∈{3,4,5,6,7,8},r∈{1,2,3},則方程(xa)2+(yb)2r2所表示的圓共有(    )
A.12個B.18個C.36個D.54個

查看答案和解析>>

一、選擇題:

CADDB  ADBBA  CD

二、填空題

(13);  (14)8;   (15);  (16).

三、解答題

(17)解:將圓C的方程配方得標準方程為

則此圓的圓心為(0 , 4),半徑為2.

(Ⅰ) 若直線與圓C相切,則有. 解得.  ………………6分

(Ⅱ) 解:過圓心C作CD⊥AB,則根據(jù)題意和圓的性質(zhì),得

 解得.

∴直線的方程是.  ………………12分

(18)解:(Ⅰ)由題意知此平面區(qū)域表示的是以構(gòu)成的三角形及其內(nèi)部,且△是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是,

所以圓的方程是.    ………………6分

 (Ⅱ)設(shè)直線的方程是:.

  因為,所以圓心到直線的距離是, 即.

解得:.                          ………………………………11分

所以直線的方程是. ………………12分

(19)解:設(shè)過點T(3,0)的直線交拋物線于點A、B .

(Ⅰ)當直線的鈄率不存在時,直線的方程為,

此時, 直線與拋物線相交于點A(3,)().B(3,-),∴=3.   …….............4分

(Ⅱ)當直線的鈄率存在時,設(shè)直線的方程為

其中,由.     …………………….….6分

又 ∵ , ∴,

                                                    ………………………………….10分

綜上所述,命題“若直線過點T(3,0),則=3” 是真命題.  ………………….12分

(20)解:(Ⅰ)由的中點,

設(shè)A、B兩點的坐標分別為

.

,

點的坐標為.               …………………………4分

  又點在直線上,  .

,       ………………6分

   (Ⅱ)由(Ⅰ)知,不妨設(shè)橢圓的一個焦點坐標為

設(shè)關(guān)于直線上的對稱點為,

則有.         ………………10分

由已知.

,∴所求的橢圓的方程為 .     ………………12分

(21)解:(Ⅰ)

     ,即;

     ,即.

      .             ……………………………………………4分

   (Ⅱ)設(shè)直線的方程為

      直線與雙曲線交于,不妨設(shè)

      直線與雙曲線交于.

     由.

     令,此式恒成立.

,.      ………………6分

       而=.

∴直線與雙曲線交于兩支上的兩點;

同理直線與雙曲線交于兩支上的兩點, 

       則                  ……………………8分

        =

       = .  ……………………10分

       令  則   在(1,2)遞增.

       又,  

.             ………………………………………12分

(22)解:(Ⅰ)直線的法向量, 的方程:

即為. ………………………2分

直線的法向量,的方程為,

即為.     ………………………4分

(Ⅱ).   ………………………6分

設(shè)點的坐標為,由,得.…………8分

由橢圓的定義的知,存在兩個定點使得恒為定值4,此時兩個定點為橢圓的兩個焦點. ………………………10分

(Ⅲ)設(shè),,則,,

,得. ………………………12分

;

當且僅當時,取最小值.

,故平行.

………………………14分

 

 


同步練習(xí)冊答案