題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題:
CADDB ADBBA CD
二、填空題
(13); (14)8; (15); (16).
三、解答題
(17)解:將圓C的方程配方得標(biāo)準(zhǔn)方程為,
則此圓的圓心為(0 , 4),半徑為2.
(Ⅰ) 若直線與圓C相切,則有. 解得. ………………6分
(Ⅱ) 解:過(guò)圓心C作CD⊥AB,則根據(jù)題意和圓的性質(zhì),得
解得.
∴直線的方程是和. ………………12分
(18)解:(Ⅰ)由題意知此平面區(qū)域表示的是以構(gòu)成的三角形及其內(nèi)部,且△是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是,
所以圓的方程是. ………………6分
(Ⅱ)設(shè)直線的方程是:.
因?yàn)?sub>,所以圓心到直線的距離是, 即.
解得:. ………………………………11分
所以直線的方程是. ………………12分
(19)解:設(shè)過(guò)點(diǎn)T(3,0)的直線交拋物線于點(diǎn)A、B .
(Ⅰ)當(dāng)直線的鈄率不存在時(shí),直線的方程為,
此時(shí), 直線與拋物線相交于點(diǎn)A(3,)().B(3,-),∴=3. …….............4分
(Ⅱ)當(dāng)直線的鈄率存在時(shí),設(shè)直線的方程為,
其中,由得 . …………………….….6分
又 ∵ , ∴,
………………………………….10分
綜上所述,命題“若直線過(guò)點(diǎn)T(3,0),則=3” 是真命題. ………………….12分
(20)解:(Ⅰ)由知是的中點(diǎn),
設(shè)A、B兩點(diǎn)的坐標(biāo)分別為
由.
,
∴點(diǎn)的坐標(biāo)為. …………………………4分
又點(diǎn)在直線上, .
, ………………6分
(Ⅱ)由(Ⅰ)知,不妨設(shè)橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,
設(shè)關(guān)于直線上的對(duì)稱點(diǎn)為,
則有. ………………10分
由已知.
,∴所求的橢圓的方程為 . ………………12分
(21)解:(Ⅰ)
,即;
,即.
. ……………………………………………4分
(Ⅱ)設(shè)直線的方程為,
直線與雙曲線交于,不妨設(shè)且,
直線與雙曲線交于.
由得.
令得,此式恒成立.
,. ………………6分
而=.
∴直線與雙曲線交于兩支上的兩點(diǎn);
同理直線與雙曲線交于兩支上的兩點(diǎn),
則 ……………………8分
=
= . ……………………10分
令 則 在(1,2)遞增.
又,
. ………………………………………12分
(22)解:(Ⅰ)直線的法向量, 的方程:,
即為. ………………………2分
直線的法向量,的方程為,
即為. ………………………4分
(Ⅱ). ………………………6分
設(shè)點(diǎn)的坐標(biāo)為,由,得.…………8分
由橢圓的定義的知,存在兩個(gè)定點(diǎn)使得恒為定值4,此時(shí)兩個(gè)定點(diǎn)為橢圓的兩個(gè)焦點(diǎn). ………………………10分
(Ⅲ)設(shè),,則,,
由,得. ………………………12分
;
當(dāng)且僅當(dāng)或時(shí),取最小值.
,故與平行.
………………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com