(10)若點(diǎn)P在拋物線上.則改點(diǎn)到點(diǎn)的距離與到拋物線焦點(diǎn)距離之和取得最小值時(shí)的坐標(biāo)為 查看更多

 

題目列表(包括答案和解析)

已知拋物線y2=4x,焦點(diǎn)為F,頂點(diǎn)為O,點(diǎn)P在拋物線上移動,Q是OP的中點(diǎn).
(1)求點(diǎn)Q的軌跡方程;
(2)若傾斜角為60°且過點(diǎn)F的直線交Q的軌跡于A,B兩點(diǎn),求弦長|AB|.

查看答案和解析>>

(滿分14 分)已知拋物線,焦點(diǎn)為F,頂點(diǎn)為原點(diǎn)O,

(1)求拋物線的焦點(diǎn)坐標(biāo)準(zhǔn)線方程;

(2)若P(a,4),求Q到F的距離;

(3)若點(diǎn)P在拋物線上移動,M是OP的中點(diǎn),求點(diǎn)M的軌跡方程.

 

 

 

查看答案和解析>>

若點(diǎn)P在拋物線上,則該點(diǎn)到點(diǎn)的距離與到拋物線焦點(diǎn)距離之和取得最小值時(shí)的坐標(biāo)為(   )

 

查看答案和解析>>

若A(3,2),F(xiàn)為拋物線y2=2x的焦點(diǎn),P在拋物線上,則使|PF|+|PA|最小時(shí)的P點(diǎn)坐標(biāo)為(    )

A.(2,2)           B.(3,)        C.(3,)          D.(3,±

查看答案和解析>>

已知拋物線y2=4x,焦點(diǎn)為F,頂點(diǎn)為O,點(diǎn)P在拋物線上移動,Q是OP的中點(diǎn).
(1)求點(diǎn)Q的軌跡方程;
(2)若傾斜角為60°且過點(diǎn)F的直線交Q的軌跡于A,B兩點(diǎn),求弦長|AB|.

查看答案和解析>>

一、選擇題:

CADDB  ADBBA  CD

二、填空題

(13);  (14)8;   (15);  (16).

三、解答題

(17)解:將圓C的方程配方得標(biāo)準(zhǔn)方程為,

則此圓的圓心為(0 , 4),半徑為2.

(Ⅰ) 若直線與圓C相切,則有. 解得.  ………………6分

(Ⅱ) 解:過圓心C作CD⊥AB,則根據(jù)題意和圓的性質(zhì),得

 解得.

∴直線的方程是.  ………………12分

(18)解:(Ⅰ)由題意知此平面區(qū)域表示的是以構(gòu)成的三角形及其內(nèi)部,且△是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是,

所以圓的方程是.    ………………6分

 (Ⅱ)設(shè)直線的方程是:.

  因?yàn)?sub>,所以圓心到直線的距離是, 即.

解得:.                          ………………………………11分

所以直線的方程是. ………………12分

(19)解:設(shè)過點(diǎn)T(3,0)的直線交拋物線于點(diǎn)A、B .

(Ⅰ)當(dāng)直線的鈄率不存在時(shí),直線的方程為,

此時(shí), 直線與拋物線相交于點(diǎn)A(3,)().B(3,-),∴=3.   …….............4分

(Ⅱ)當(dāng)直線的鈄率存在時(shí),設(shè)直線的方程為

其中,由.     …………………….….6分

又 ∵ , ∴,

                                                    ………………………………….10分

綜上所述,命題“若直線過點(diǎn)T(3,0),則=3” 是真命題.  ………………….12分

(20)解:(Ⅰ)由的中點(diǎn),

設(shè)A、B兩點(diǎn)的坐標(biāo)分別為

.

,

點(diǎn)的坐標(biāo)為.               …………………………4分

  又點(diǎn)在直線上,  .

,       ………………6分

   (Ⅱ)由(Ⅰ)知,不妨設(shè)橢圓的一個(gè)焦點(diǎn)坐標(biāo)為

設(shè)關(guān)于直線上的對稱點(diǎn)為,

則有.         ………………10分

由已知.

,∴所求的橢圓的方程為 .     ………………12分

(21)解:(Ⅰ)

     ,即;

     ,即.

      .             ……………………………………………4分

   (Ⅱ)設(shè)直線的方程為,

      直線與雙曲線交于,不妨設(shè),

      直線與雙曲線交于.

     由.

     令,此式恒成立.

.      ………………6分

       而=.

∴直線與雙曲線交于兩支上的兩點(diǎn);

同理直線與雙曲線交于兩支上的兩點(diǎn), 

       則                  ……………………8分

        =

       = .  ……………………10分

       令  則   在(1,2)遞增.

       又,  

.             ………………………………………12分

(22)解:(Ⅰ)直線的法向量, 的方程:,

即為. ………………………2分

直線的法向量,的方程為,

即為.     ………………………4分

(Ⅱ).   ………………………6分

設(shè)點(diǎn)的坐標(biāo)為,由,得.…………8分

由橢圓的定義的知,存在兩個(gè)定點(diǎn)使得恒為定值4,此時(shí)兩個(gè)定點(diǎn)為橢圓的兩個(gè)焦點(diǎn). ………………………10分

(Ⅲ)設(shè),,則,

,得. ………………………12分

;

當(dāng)且僅當(dāng)時(shí),取最小值.

,故平行.

………………………14分

 

 


同步練習(xí)冊答案