已知直線相交于A.B兩點(diǎn).是線段AB上的一點(diǎn)..且點(diǎn)在直線上. (Ⅰ)求橢圓的離心率, 查看更多

 

題目列表(包括答案和解析)

已知直線相交于A、B兩點(diǎn),M是線段AB上的一點(diǎn),,且點(diǎn)M在直線上.

   (Ⅰ)求橢圓的離心率;

   (Ⅱ)若橢圓的焦點(diǎn)關(guān)于直線的對稱點(diǎn)在單位圓上,求橢圓的方程.

查看答案和解析>>

已知直線相交于A、B兩點(diǎn),M是線段AB上的一點(diǎn),,且點(diǎn)M在直線上.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若橢圓的焦點(diǎn)關(guān)于直線的對稱點(diǎn)在單位圓上,求橢圓的方程.

查看答案和解析>>

已知直線l:y=k(x+2
2
)與圓O:x2+y2=4相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),三角形ABO的面積為S.
(Ⅰ)試將S表示成的函數(shù)S(k),并求出它的定義域;
(Ⅱ)求S的最大值,并求取得最大值時(shí)k的值.

查看答案和解析>>

已知直線y=
3
-x與圓x2+y2=2相交于A,B兩點(diǎn),是優(yōu)弧AB上任意一點(diǎn),則∠APB=( 。
A、
3
B、
π
6
C、
6
D、
π
3

查看答案和解析>>

已知直線l:y=kx-1與圓C:(x-1)2+y2=1相交于P、Q兩點(diǎn),點(diǎn)M(0,b)滿足MP⊥MQ.
(Ⅰ)當(dāng)b=0時(shí),求實(shí)數(shù)k的值;
(Ⅱ)當(dāng)b∈(-
12
,1)
時(shí),求實(shí)數(shù)k的取值范圍;
(Ⅲ)設(shè)A、B是圓C:(x-1)2+y2=1上兩點(diǎn),且滿足|OA|•|OB|=1,試問:是否存在一個(gè)定圓S,使直線AB恒與圓S相切.

查看答案和解析>>

一、選擇題:

CADCB  AABBD  CD

二、填空題

(13);  (14)8;   (15);  (16)3.

三、解答題

(17)解:將圓C的方程配方得標(biāo)準(zhǔn)方程為

則此圓的圓心為(0 , 4),半徑為2.

(Ⅰ) 若直線與圓C相切,則有. 解得.  ………………6分

(Ⅱ) 解:過圓心C作CD⊥AB,則根據(jù)題意和圓的性質(zhì),得

 解得.

∴直線的方程是.  ………………12分

(18)解:(Ⅰ)由題意知此平面區(qū)域表示的是以構(gòu)成的三角形及其內(nèi)部,且△是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是,

所以圓的方程是.    ………………6分

 (Ⅱ)設(shè)直線的方程是:.

  因?yàn)?sub>,所以圓心到直線的距離是, 即.

解得:.                          ………………………………11分

所以直線的方程是. ………………12分

(19)解:設(shè)過點(diǎn)T(3,0)的直線交拋物線于點(diǎn)A、B .

(Ⅰ)當(dāng)直線的鈄率不存在時(shí),直線的方程為,

此時(shí), 直線與拋物線相交于點(diǎn)A(3,)().B(3,-),∴=3.   …….............4分

(Ⅱ)當(dāng)直線的鈄率存在時(shí),設(shè)直線的方程為,

其中,由.     …………………….….6分

又 ∵ , ∴,

                                                    ………………………………….10分

綜上所述,命題“若直線過點(diǎn)T(3,0),則=3” 是真命題.  ………………….12分

(20)解:(Ⅰ)由的中點(diǎn),

設(shè)A、B兩點(diǎn)的坐標(biāo)分別為

.

,

點(diǎn)的坐標(biāo)為.               …………………………4分

  又點(diǎn)在直線上,  .

,       ………………6分

   (Ⅱ)由(Ⅰ)知,不妨設(shè)橢圓的一個(gè)焦點(diǎn)坐標(biāo)為

設(shè)關(guān)于直線上的對稱點(diǎn)為,

則有.         ………………10分

由已知.

,∴所求的橢圓的方程為 .     ………………12分

(21)解:(Ⅰ)由已知條件,直線的方程為,

代入橢圓方程得

整理得   ①    ……………………………………3分

直線與橢圓有兩個(gè)不同的交點(diǎn)等價(jià)于,

解得.即的取值范圍為.………………6分

 

(Ⅱ)設(shè),則,

由方程①,.  、

. 、      …………………………………9分

所以共線等價(jià)于,

將②③代入上式,解得

由(Ⅰ)知,故沒有符合題意的常數(shù).………………12分

 

 

(22)解:(Ⅰ)設(shè)點(diǎn),則,由得:

,化簡得.……4分

(Ⅱ)(1)設(shè)直線的方程為:

設(shè),,又

聯(lián)立方程組,消去得:,,

              ……………………………………………7

得:

,,整理得:,

.……10分

(2)解:

當(dāng)且僅當(dāng),即時(shí)等號成立,所以最小值為.   ……14分

 

 

 


同步練習(xí)冊答案