[解析]幾何體為圓錐.側(cè)面積為.選B. 查看更多

 

題目列表(包括答案和解析)

當(dāng)函數(shù)取得最大值時,x=___________.

【解析】函數(shù)為,當(dāng)時,,由三角函數(shù)圖象可知,當(dāng),即時取得最大值,所以.

 

查看答案和解析>>

已知為第二象限角,,則

(A)          (B)           (C)          (D)

【解析】因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821124785682572/SYS201207182113157475655062_ST.files/image001.png">為第二象限,所以,即,所以,選B.

 

查看答案和解析>>

當(dāng)函數(shù)取得最大值時,___________.

【解析】函數(shù)為,當(dāng)時,,由三角函數(shù)圖象可知,當(dāng),即時取得最大值,所以.

 

查看答案和解析>>

【解析】A.設(shè)

,所以是偶函數(shù),所以選A.

查看答案和解析>>

如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點(diǎn).

(1)求圓錐體的體積;

(2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

第一問中,由題意,,故

從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

解:(1)由題意,,

從而體積.

(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

 

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空題(每小題4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答題

17.解:(Ⅰ)在中,由及余弦定理得

      而,則

      (Ⅱ)由及正弦定理得,

      而,則

      于是,

     由,當(dāng)時,。

18解:(Ⅰ)基本事件共有36個,方程有正根等價于,即。設(shè)“方程有兩個正根”為事件,則事件包含的基本事件為共4個,故所求的概率為

(Ⅱ)試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域,其面積為

設(shè)“方程無實(shí)根”為事件,則構(gòu)成事件的區(qū)域?yàn)?/p>

,其面積為

故所求的概率為

19.解:(Ⅰ)證明:由平面平面,則

   而平面,則,又,則平面

   又平面,故。

(Ⅱ)在中,過點(diǎn)于點(diǎn),則平面

由已知及(Ⅰ)得

(Ⅲ)在中過點(diǎn)于點(diǎn),在中過點(diǎn)于點(diǎn),連接,則由

  由平面平面,則平面

再由平面,又平面,則平面

  故當(dāng)點(diǎn)為線段上靠近點(diǎn)的一個三等分點(diǎn)時,平面

  20.解:(Ⅰ)設(shè)等差數(shù)列的公差為,

,

(Ⅱ)由

,故數(shù)列適合條件①

,則當(dāng)時,有最大值20

,故數(shù)列適合條件②.

綜上,故數(shù)列是“特界”數(shù)列。

     21.證明:消去

設(shè)點(diǎn),則

,,即

化簡得,則

,故

(Ⅱ)解:由

  化簡得

    由,即

故橢圓的長軸長的取值范圍是

22.解:(Ⅰ),由在區(qū)間上是增函數(shù)

則當(dāng)時,恒有,

在區(qū)間上恒成立。

,解得

(Ⅱ)依題意得

,解得

在區(qū)間上的最大值是。

(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個不同的交點(diǎn),

即方程恰有3個不等的實(shí)數(shù)根。

是方程的一個實(shí)數(shù)根,則

方程有兩個非零實(shí)數(shù)根,

故滿足條件的存在,其取值范圍是

 

 


同步練習(xí)冊答案