題目列表(包括答案和解析)
某校從參加高三年級第一學(xué)期期末考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(成績均為整數(shù),滿分為100分),將數(shù)學(xué)成績進(jìn)行分組并根據(jù)各組人數(shù)制成如下頻率分布表:
(Ⅰ)將上面的頻率分布表補(bǔ)充完整,并估計(jì)本次考試全校85分以上學(xué)生的比例;
(Ⅱ)為了幫助成績差的同學(xué)提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229178901869405_ST.files/image001.png">中任選出兩位同學(xué),共同幫助成績在中的某一個(gè)同學(xué),試列出所有基本事件;若同學(xué)成績?yōu)?3分,同學(xué)成績?yōu)?5分,求、兩同學(xué)恰好被安排在“二幫一”中同一小組的概率.
分 組 |
頻 數(shù) |
頻 率[來源:學(xué)_科_網(wǎng)] |
[40, 50 ) |
2 |
0.04 |
[ 50, 60 ) |
3 |
0.06 |
[ 60, 70 ) |
14 |
0.28 |
[ 70, 80 ) |
15 |
0.30 |
[ 80, 90 ) |
|
|
[ 90, 100 ] |
4 |
0.08 |
合 計(jì) |
|
|
【解析】第一問利用表格可知第五行以此填入 12 0.24
第七行以此填入 50 1 估計(jì)本次全校85分以上學(xué)生比例為32%
第二問中,設(shè)數(shù)學(xué)成績在[90,100]間的四個(gè)同學(xué)分別用字母B1,B2,B3,B4表示;被幫助的兩個(gè)同學(xué)為A1,A2出現(xiàn)的“二幫一”小組有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1兩同學(xué)恰好被安排在“二幫一”中同一小組的有 A1B1B2;A1B1B3;A1B1B4
l利用古典概型概率得到。
(Ⅰ)第五行以此填入 12 0.24 ……………2分
第七行以此填入 50 1 ……………4分
估計(jì)本次全校85分以上學(xué)生比例為32% ……………6分
(Ⅱ)設(shè)數(shù)學(xué)成績在[90,100]間的四個(gè)同學(xué)分別用字母B1,B2,B3,B4表示;被幫助的兩個(gè)同學(xué)為A1,A2出現(xiàn)的“二幫一”小組有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1兩同學(xué)恰好被安排在“二幫一”中同一小組的有 A1B1B2;A1B1B3;A1B1B4
所以 A1、B1兩同學(xué)恰好被安排在“二幫一”中同一小組的概率為 3 /12 =1 /4
一、選擇題(每小題5分,共60分)
1.A 2.C 3.C 4.D 5.B 6.A 7.D 8.D 9.C 10.B 11.B 12.D
二、填空題(每小題4分,共16分)
13. 14.3825 15.1 16.0ⅠⅡ
三、解答題
17.解:(Ⅰ)在中,由及余弦定理得
而,則;
(Ⅱ)由及正弦定理得,
而,則
于是,
由得,當(dāng)即時(shí),。
18解:(Ⅰ)基本事件共有36個(gè),方程有正根等價(jià)于,即。設(shè)“方程有兩個(gè)正根”為事件,則事件包含的基本事件為共4個(gè),故所求的概率為;
(Ⅱ)試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域,其面積為
設(shè)“方程無實(shí)根”為事件,則構(gòu)成事件的區(qū)域?yàn)?/p>
,其面積為
故所求的概率為
19.解:(Ⅰ)證明:由平面及得平面,則
而平面,則,又,則平面,
又平面,故。
(Ⅱ)在中,過點(diǎn)作于點(diǎn),則平面.
由已知及(Ⅰ)得.
故
(Ⅲ)在中過點(diǎn)作交于點(diǎn),在中過點(diǎn)作交于點(diǎn),連接,則由得
由平面平面,則平面
再由得平面,又平面,則平面.
故當(dāng)點(diǎn)為線段上靠近點(diǎn)的一個(gè)三等分點(diǎn)時(shí),平面.
20.解:(Ⅰ)設(shè)等差數(shù)列的公差為,
則,
(Ⅱ)由
得,故數(shù)列適合條件①
而,則當(dāng)或時(shí),有最大值20
即,故數(shù)列適合條件②.
綜上,故數(shù)列是“特界”數(shù)列。
21.證明:消去得
設(shè)點(diǎn),則,
由,,即
化簡得,則
即,故
(Ⅱ)解:由
化簡得
由得,即
故橢圓的長軸長的取值范圍是。
22.解:(Ⅰ),由在區(qū)間上是增函數(shù)
則當(dāng)時(shí),恒有,
即在區(qū)間上恒成立。
由且,解得.
(Ⅱ)依題意得
則,解得
而
故在區(qū)間上的最大值是。
(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個(gè)不同的交點(diǎn),
即方程恰有3個(gè)不等的實(shí)數(shù)根。
而是方程的一個(gè)實(shí)數(shù)根,則
方程有兩個(gè)非零實(shí)數(shù)根,
則即且.
故滿足條件的存在,其取值范圍是.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com