8.定義在R上的函數(shù)滿足.為的導(dǎo)函數(shù). 查看更多

 

題目列表(包括答案和解析)

定義在R上的函數(shù)滿足的導(dǎo)函數(shù),已知函數(shù)的圖象如右圖所示.若兩正數(shù)滿足,則的取值范圍是(   )

A    B   C    D

 

 

查看答案和解析>>

定義在R上的函數(shù)滿足的導(dǎo)函數(shù),已知函數(shù)的圖象如圖所示.若兩正數(shù)滿足,則的取值范圍是                             (  )

  A.                B.    C.      D.                 

 

查看答案和解析>>

定義在R上的函數(shù)滿足的導(dǎo)函數(shù),已知函數(shù)的圖象如圖所示.若兩正數(shù)滿足,則的取值范圍是(  )

A.B.C.D.

查看答案和解析>>

定義在R上的函數(shù)滿足的導(dǎo)函數(shù),已知函數(shù)的圖象如圖所示.若兩正數(shù)滿足,則的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

定義在R上的函數(shù)滿足的         導(dǎo)函數(shù),已知函數(shù)的圖象如圖所示.若兩正數(shù) 滿足,則的取值范圍是  (    )

       A.                                      B.   

C.                                         D.    

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當(dāng)且僅當(dāng) 時等號成立。)

  (當(dāng)且僅當(dāng) 時等號成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為,

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

      20081226

      (2)

        由

      分別令,的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

      (3) 列表如下:

      0

      0

      1

      0

      ―1

      0

      19.解:(I)由,則.

      兩式相減得. 即.          

      時,.∴數(shù)列是首項為4,公比為2的等比數(shù)列.

      (Ⅱ)由(I)知.∴            

      ①當(dāng)為偶數(shù)時,

      ∴原不等式可化為,即.故不存在合條件的.      

      ②當(dāng)為奇數(shù)時,.

      原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

      20.解:(1)依題意,得

         (2)令

      當(dāng)在此區(qū)間為增函數(shù)

      當(dāng)在此區(qū)間為減函數(shù)

      當(dāng)在此區(qū)間為增函數(shù)

      處取得極大值又

      因此,當(dāng)

      要使得不等式

      所以,存在最小的正整數(shù)k=2007,

      使得不等式恒成立。……7分

        (3)(方法一)

           

      又∵由(2)知為增函數(shù),

      綜上可得

      (方法2)由(2)知,函數(shù)

      上是減函數(shù),在[,1]上是增函數(shù)又

      所以,當(dāng)時,-

      又t>0,

      ,且函數(shù)上是增函數(shù),

       

      綜上可得

      21.解:(1) 

      當(dāng),

      函數(shù)有一個零點;當(dāng)時,,函數(shù)有兩個零點。

         (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

      由②知對,都有

      又因為恒成立,  ,即,即

      ,

      當(dāng)時,,

      其頂點為(-1,0)滿足條件①,又,

      都有,滿足條件②!啻嬖,使同時滿足條件①、②。

         (3)令,則

      ,

      內(nèi)必有一個實根。即,

      使成立。

       

       

       

       

       


      同步練習(xí)冊答案