A. B.且 C. D. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應(yīng)的一個特征向量為
1
-4
,點(diǎn)P(2,-1)在矩陣A對應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

 

A.(幾何證明選講選做題)

如圖,已知AB為圓O的直徑,BC切圓O于點(diǎn)B,AC交圓O于點(diǎn)P,E為線段BC的中點(diǎn).求證:OPPE

B.(矩陣與變換選做題)

已知M,N,設(shè)曲線y=sinx在矩陣MN對應(yīng)的變換作用下得到曲線F,求F的方程.

C.(坐標(biāo)系與參數(shù)方程選做題)

在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點(diǎn)、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點(diǎn),求線段AB的長.

D.(不等式選做題)

設(shè)x,y均為正數(shù),且xy,求證:2x≥2y+3.

 

查看答案和解析>>

A.(幾何證明選講選做題)


如圖,已知AB為圓O的直徑,BC切圓O于點(diǎn)B,AC交圓O于點(diǎn)P,E為線段BC的中點(diǎn).求證:OPPE

B.(矩陣與變換選做題)
已知M,N,設(shè)曲線y=sinx在矩陣MN對應(yīng)的變換作用下得到曲線F,求F的方程.
C.(坐標(biāo)系與參數(shù)方程選做題)
在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點(diǎn)、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點(diǎn),求線段AB的長.
D.(不等式選做題)
設(shè)x,y均為正數(shù),且xy,求證:2x≥2y+3.

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應(yīng)的一個特征向量為,點(diǎn)P(2,-1)在矩陣A對應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當(dāng)且僅當(dāng) 時等號成立。)

  (當(dāng)且僅當(dāng) 時等號成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為,

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項(xiàng)為

  (2)由于   由(1)得 

=

18.解:(1)因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽高級2009年高三年級檢測試題(二)--數(shù)學(xué)文科.files/image195.gif" >     圖象的一條對稱軸是直線 

<dfn id="lvnyo"></dfn>

<i id="lvnyo"></i>

    20081226

    (2)

      由

    分別令,的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

    (3) 列表如下:

    0

    0

    1

    0

    ―1

    0

    19.解:(I)由,則.

    兩式相減得. 即.          

    時,.∴數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.

    (Ⅱ)由(I)知.∴            

    ①當(dāng)為偶數(shù)時,,

    ∴原不等式可化為,即.故不存在合條件的.      

    ②當(dāng)為奇數(shù)時,.

    原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

    20.解:(1)依題意,得

       (2)令

    當(dāng)在此區(qū)間為增函數(shù)

    當(dāng)在此區(qū)間為減函數(shù)

    當(dāng)在此區(qū)間為增函數(shù)

    處取得極大值又

    因此,當(dāng)

    要使得不等式

    所以,存在最小的正整數(shù)k=2007,

    使得不等式恒成立!7分

      (3)(方法一)

         

    又∵由(2)知為增函數(shù),

    綜上可得

    (方法2)由(2)知,函數(shù)

    上是減函數(shù),在[,1]上是增函數(shù)又

    所以,當(dāng)時,-

    又t>0,

    ,且函數(shù)上是增函數(shù),

     

    綜上可得

    21.解:(1) 

    當(dāng),

    函數(shù)有一個零點(diǎn);當(dāng)時,,函數(shù)有兩個零點(diǎn)。

       (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

    由②知對,都有

    又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽高級2009年高三年級檢測試題(二)--數(shù)學(xué)文科.files/image514.gif" >恒成立,  ,即,即

    ,

    當(dāng)時,,

    其頂點(diǎn)為(-1,0)滿足條件①,又,

    都有,滿足條件②。∴存在,使同時滿足條件①、②。

       (3)令,則

    內(nèi)必有一個實(shí)根。即,

    使成立。

     

     

     

     

     


    同步練習(xí)冊答案