(Ⅱ)如果.求的面積的最大值 查看更多

 

題目列表(包括答案和解析)

如果△ABC外接圓半徑為R,且2R(sin2A-sin2C)=(
2
a-b)sinB
,
(1)求角C的值
(2)求△ABC面積的最大值.

查看答案和解析>>

如果△ABC外接圓半徑為R,且2R(sin2A-sin2C)=(
2
a-b)sinB
,
(1)求角C的值
(2)求△ABC面積的最大值.

查看答案和解析>>

如果△ABC外接圓半徑為R,且,
(1)求角C的值
(2)求△ABC面積的最大值.

查看答案和解析>>

如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。

(1)求AB和OC的長(zhǎng);

(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合)。過(guò)點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長(zhǎng)為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留)。

 

查看答案和解析>>

如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。

(1)求AB和OC的長(zhǎng);
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合)。過(guò)點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長(zhǎng)為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留)。

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當(dāng)且僅當(dāng) 時(shí)等號(hào)成立。)

  (當(dāng)且僅當(dāng) 時(shí)等號(hào)成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項(xiàng)為

  (2)由于   由(1)得 

=

18.解:(1)因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽(yáng)高級(jí)2009年高三年級(jí)檢測(cè)試題(二)--數(shù)學(xué)文科.files/image195.gif" >     圖象的一條對(duì)稱軸是直線 

<blockquote id="2hwvz"></blockquote>

20081226

(2)

  由

分別令的單調(diào)增區(qū)間是(開(kāi)閉區(qū)間均可)。

(3) 列表如下:

0

0

1

0

―1

0

19.解:(I)由,則.

兩式相減得. 即.          

時(shí),.∴數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.

(Ⅱ)由(I)知.∴            

①當(dāng)為偶數(shù)時(shí),,

∴原不等式可化為,即.故不存在合條件的.      

②當(dāng)為奇數(shù)時(shí),.

原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

20.解:(1)依題意,得

   (2)令

當(dāng)在此區(qū)間為增函數(shù)

當(dāng)在此區(qū)間為減函數(shù)

當(dāng)在此區(qū)間為增函數(shù)

處取得極大值又

因此,當(dāng)

要使得不等式

所以,存在最小的正整數(shù)k=2007,

使得不等式恒成立。……7分

  (3)(方法一)

     

又∵由(2)知為增函數(shù),

綜上可得

(方法2)由(2)知,函數(shù)

上是減函數(shù),在[,1]上是增函數(shù)又

所以,當(dāng)時(shí),-

又t>0,

,且函數(shù)上是增函數(shù),

 

綜上可得

21.解:(1) 

當(dāng)時(shí),

函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)。

   (2)假設(shè)存在,由①知拋物線的對(duì)稱軸為x=-1,∴ 

由②知對(duì),都有

又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽(yáng)高級(jí)2009年高三年級(jí)檢測(cè)試題(二)--數(shù)學(xué)文科.files/image514.gif" >恒成立,  ,即,即

,

當(dāng)時(shí),,

其頂點(diǎn)為(-1,0)滿足條件①,又對(duì),

都有,滿足條件②!啻嬖,使同時(shí)滿足條件①、②。

   (3)令,則

,

內(nèi)必有一個(gè)實(shí)根。即,

使成立。

 

 

 

 

 


同步練習(xí)冊(cè)答案

      <blockquote id="2hwvz"></blockquote>