(3)求證: 查看更多

 

題目列表(包括答案和解析)

13、求證:若一直線與一個平面平行,則過平面內(nèi)的一點且與這條直線平行的直線必在此平面內(nèi).

查看答案和解析>>

求證:對于任意不小于3的自然數(shù),
2n-1
2n+1
n
n+1

查看答案和解析>>

求證:tan2θ(1+cos2θ)=1-cos2θ.

查看答案和解析>>

15、求證:不論a,b為何實數(shù),直線(2a+b)x+(a+b)y+a-b=0均通過一定點,并求此定點坐標.

查看答案和解析>>

求證:不論a取何值,直線(a+1)x-(2a+5)y-6=0必過一定點.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當且僅當 時等號成立。)

  (當且僅當 時等號成立。)

17.解:(1)由已知得 解得.設數(shù)列的公比為

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

20081226

(2)

  由

分別令,的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

(3) 列表如下:

0

0

1

0

―1

0

19.解:(I)由,則.

兩式相減得. 即.          

時,.∴數(shù)列是首項為4,公比為2的等比數(shù)列.

(Ⅱ)由(I)知.∴            

①當為偶數(shù)時,,

∴原不等式可化為,即.故不存在合條件的.      

②當為奇數(shù)時,.

原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

20.解:(1)依題意,得

   (2)令

在此區(qū)間為增函數(shù)

在此區(qū)間為減函數(shù)

在此區(qū)間為增函數(shù)

處取得極大值又

因此,當

要使得不等式

所以,存在最小的正整數(shù)k=2007,

使得不等式恒成立!7分

  (3)(方法一)

     

又∵由(2)知為增函數(shù),

綜上可得

(方法2)由(2)知,函數(shù)

上是減函數(shù),在[,1]上是增函數(shù)又

所以,當時,-

又t>0,

,且函數(shù)上是增函數(shù),

 

綜上可得

21.解:(1) 

,

函數(shù)有一個零點;當時,,函數(shù)有兩個零點。

   (2)假設存在,由①知拋物線的對稱軸為x=-1,∴ 

由②知對,都有

又因為恒成立,  ,即,即

,

時,,

其頂點為(-1,0)滿足條件①,又,

都有,滿足條件②。∴存在,使同時滿足條件①、②。

   (3)令,則

,

內(nèi)必有一個實根。即,

使成立。

 

 

 

 

 


同步練習冊答案
    <center id="wn88d"><div id="wn88d"><i id="wn88d"></i></div></center>
      <code id="wn88d"></code>