即 得證. 查看更多

 

題目列表(包括答案和解析)

證明不是直接從原命題的條件逐步推得命題成立,這種不直接證明的方法通常稱為________.如反證法,反證法的證明過程概括為:“________”“________”“________”“________”,

即從否定結論開始,經過正確的推理,導致邏輯矛盾,從而達到新的否定(即肯定原命題)的過程.

查看答案和解析>>

在證明恒等式時,可利用組合數表示n2,即推得.類似地,在推導恒等式時,也可以利用組合數表示n3推得.則n3=   

查看答案和解析>>

某同學在證明命題“
7
-
3
6
-
2
”時作了如下分析,請你補充完整.
要證明
7
-
3
6
-
2
,只需證明
7
+
2
6
+
3
7
+
2
6
+
3
,只需證明
(
7
+
2
)2<(
6
+
3
)2
(
7
+
2
)2<(
6
+
3
)2
,
展開得9+2
14
<9+2
18
,即
14
18
,只需證明14<18,
因為14<18顯然成立
因為14<18顯然成立

所以原不等式:
7
+
2
6
+
3
成立.

查看答案和解析>>

通過計算可得下列等式:

22-12=2×1+1,

32-22=2×2+1,

42-32=2×3+1,

……

(n+1)2-n2=2×n+1,

將以上各式分別相加,得

(n+1)2-12=2×(1+2+3+…+n)+n,

即1+2+3+…+n=

類比上述方法,請你證明12+22+32+…+n2n(n+1)(2n+1).

查看答案和解析>>

用數學歸納法證明:

【解析】首先證明當n=1時等式成立,再假設n=k時等式成立,得到等式

,

下面證明當n=k+1時等式左邊

,

根據前面的假設化簡即可得到結果,最后得到結論.

 

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有 一項是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

答案

 

 

 

 

 

 

 

 

 

 

二、填空題:(本大題共5個小題,每小題5分,共25分,)

11.    12.     13.    14.       15.

 

三、解答題:


同步練習冊答案