∴直線恒過定點.----------------------13分 查看更多

 

題目列表(包括答案和解析)

(13分) (理科)已知雙曲線與橢圓有公共焦點,且以拋物線的準(zhǔn)線為雙曲線的一條準(zhǔn)線.動直線過雙曲線的右焦點且與雙曲線的右支交于兩點.

(1)求雙曲線的方程;

(2)無論直線繞點怎樣轉(zhuǎn)動,在雙曲線上是否總存在定點,使恒成立?若存在,求出點的坐標(biāo),若不存在,請說明理由.

 

查看答案和解析>>

(13分)(理科)已知雙曲線與橢圓有公共焦點,且以拋物線的準(zhǔn)線為雙曲線的一條準(zhǔn)線.動直線過雙曲線的右焦點且與雙曲線的右支交于兩點.
(1)求雙曲線的方程;
(2)無論直線繞點怎樣轉(zhuǎn)動,在雙曲線上是否總存在定點,使恒成立?若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

(13分)已知橢圓C的中心在坐標(biāo)原點,離心率,且其中一個焦點與拋物線的焦點重合.
(1)求橢圓C的方程;
(2)過點S(,0)的動直線l交橢圓CA、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

(本小題共13分)

在平面直角坐標(biāo)系中,設(shè)點,以線段為直徑的圓經(jīng)過原點.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)過點的直線與軌跡交于兩點,點關(guān)于軸的對稱點為,試判斷直線是否恒過一定點,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿分13分)

    如圖,已知橢圓:的離心率為,左焦點為,過點且斜率為的直線交橢圓于兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)求的取值范圍;

(Ⅲ)在軸上,是否存在定點,使恒為定值?若存在,求出點的坐標(biāo)和這個定值;若不存在,說明理由.


 

查看答案和解析>>


同步練習(xí)冊答案