題目列表(包括答案和解析)
A.1 | B.2 | C.3 | D.4 |
①若m,n是異面直線,mα,m∥β,nβ,n∥α,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α⊥β,α∩β=m,n⊥m,則n⊥β;
④符m⊥α,n∥β且α∥β,則m⊥n.
其中正確命題的個(gè)數(shù)為( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
設(shè)l,m,n為三條不同的直線,α、β為兩個(gè)不同的平面,下列命題中正確的個(gè)數(shù)是( )
① 若l⊥α,m∥β,α⊥β則l⊥m ② 若則l⊥α
③ 若l∥m,m∥n,l⊥α,則n⊥α ④ 若l∥m,m⊥α,n⊥β,α∥β,則l∥n
A.1 B.2 C.3 D.4
一、1 B 2 D 3 A 4 D 5 C 6 B
7 A 8 A 9 C 10 D 11 C 12 B
二、13、3 14、 15、-160 16、
三、17、解: (1) ……… 3分
的最小正周期為 ………………… 5分
(2) , ………………… 7分
………………… 10分
………………… 11分
當(dāng)時(shí),函數(shù)的最大值為1,最小值 ……… 12分
18.解:(1)P1=; ……… 6分
(2)方法一:P2=
方法二:P2=
方法三:P2=1- ……… 12分
19、解法一:
(Ⅰ)連結(jié)C交BC于O,則O是B C的中點(diǎn),連結(jié)DO。
∵在△AC中,O、D均為中點(diǎn),
∴A∥DO…………………………2分
∵A平面BD,DO平面BD,
∴A∥平面BD。…………………4分
(Ⅱ)設(shè)正三棱柱底面邊長(zhǎng)為2,則DC = 1。
∵∠DC = 60°,∴C= 。
作DE⊥BC于E。
∵平面BC⊥平面ABC,
∴DE⊥平面BC
作EF⊥B于F,連結(jié)DF,則 DF⊥B
∴∠DFE是二面角D-B-C的平面角………………8分
在Rt△DEC中,DE=
在Rt△BFE中,EF = BE?sin
∴在Rt△DEF中,tan∠DFE =
∴二面角D-B-C的大小為arctan………………12分
解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,
設(shè)| AD | = 1∵∠DC =60°∴| C| = 。
則A(1,0,0),B(0,,0),C(-1,0,0),
(1,0), ,
(Ⅰ)連結(jié)C交B于O是C的中點(diǎn),連結(jié)DO,則
O. =
∵A平面BD,
∴A∥平面BD.………………………………………………4分
(Ⅱ)=(-1,0,),
設(shè)平面BD的法向量為n = ( x , y , z ),則
即 則有= 0令z = 1
則n = (,0,1) …………………………………8分
設(shè)平面BC的法向量為m = ( x′ ,y′,z′)
|