17 查看更多

 

題目列表(包括答案和解析)

(17) (本小題滿分12分)在△ABC中,BC=2,.

(Ⅰ)求AB的值;w.w.(Ⅱ)求的值.

查看答案和解析>>

17(本小題滿分12分)

設(shè)等差數(shù)列滿足,。

(Ⅰ)求的通項公式;

(Ⅱ)求的前項和及使得最大的序號的值。

 

查看答案和解析>>

(本小題滿分12分)

已知斜率為1的直線1與雙曲線C:相交于B、D兩點,且BD的中點為M(1.3)

(Ⅰ)(Ⅰ)求C的離心率;

(Ⅱ)(Ⅱ)設(shè)C的右頂點為A,右焦點為F,|DF|·|BF|=17證明:過A、B、D三點的圓與x軸相切。

查看答案和解析>>

(本小題滿分12分)

已知斜率為1的直線1與雙曲線C:相交于B、D兩點,且BD的中點為M(1.3)

(Ⅰ)(Ⅰ)求C的離心率;

(Ⅱ)(Ⅱ)設(shè)C的右頂點為A,右焦點為F,|DF|·|BF|=17證明:過A、B、D三點的圓與x軸相切。

查看答案和解析>>

(本小題滿分12分)某港口海水的深度(米)是時間(時)()的函數(shù),記為:
已知某日海水深度的數(shù)據(jù)如下:

(時)
0
3
6
9
12
15
18
21
24
(米)
10.0
13.0
9.9
7.0
10.0
13.0
10.1
7.0
10.0
經(jīng)長期觀察,的曲線可近似地看成函數(shù)的圖象
(1)試根據(jù)以上數(shù)據(jù),求出函數(shù)的振幅A、最小正周期T和表達式;
(2)一般情況下,船舶航行時,船底離海底的距離為米或米以上時認為是安全的(船舶?繒r,船底只需不碰海底即可)。某船吃水深度(船底離水面的距離)為米,如果該船希望在同一天內(nèi)安全進出港,請問,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 D     6 B   

7 A     8  A   9 C   10 D    11 B    12 B

   二、13、3      14、-160    15、     16、  

   三、17、解: (1)     …… 3分

     的最小正周期為                        ………………… 5分

(2) ,          …………………  7分     

                        ………………… 10分

                                ………………… 11分

 當(dāng)時,函數(shù)的最大值為1,最小值 ………… 12分

 18、(I)解:設(shè)這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對立事件概率公式

   得:

即這箱產(chǎn)品被用戶拒絕接收的概率為           …………   6分

(II)                

                                   ………… 10分

1

2

3

P

                                                          …………11分

∴ E=                                  …………12分

19、解法一:

(Ⅰ)連結(jié)B1CBCO,則OBC的中點,連結(jié)DO

∵在△AC中,OD均為中點,

ADO   …………………………2分

A平面BD,DO平面BD

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C=

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角……………………………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| =

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結(jié)CBOC的中點,連結(jié)DO,則                  O.       =

A平面BD,

A∥平面BD.……………………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)…………………………………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

 

<dd id="g8r3c"></dd>

    <strong id="g8r3c"><small id="g8r3c"><div id="g8r3c"></div></small></strong>
  •       令y = -1,解得m = (,-1,0)

          二面角DBC的余弦值為cos<n , m>=

    ∴二面角DBC的大小為arc cos          …………12分

    20、解: 對函數(shù)求導(dǎo)得: ……………2分

    (Ⅰ)當(dāng)時,                   

    解得

      解得

    所以, 單調(diào)增區(qū)間為,,

    單調(diào)減區(qū)間為(-1,1)                                    ……………5分

    (Ⅱ) 令,即,解得     ………… 6分

    時,列表得:

     

    x

    1

    +

    0

    0

    +

    極大值

    極小值

    ……………8分

    對于時,因為,所以,

    >0                                                    …………   10 分

    對于時,由表可知函數(shù)在時取得最小值

    所以,當(dāng)時,                              

    由題意,不等式恒成立,

    所以得,解得                          ……………12分

    21、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應(yīng)準線,

    離心率為的橢圓

    設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

    ,,∴點在x軸上,且,則3,

    解之得:,     

    ∴坐標原點為橢圓的對稱中心 

    ∴動點M的軌跡方程為:                 …………    4分

    (II)設(shè),設(shè)直線的方程為(-2〈n〈2),代入

                         ………… 5分

    , 

         …………  6分

    ,K(2,0),,

    ,

     

    解得: (舍)      ∴ 直線EF在X軸上的截距為    …………8分

    (Ⅲ)設(shè),由知, 

    直線的斜率為                …………    10分

    當(dāng)時,;

    當(dāng)時,,

    時取“=”)或時取“=”),

                                    

    綜上所述                         …………  12分  

    22、(I)解:方程的兩個根為,

    當(dāng)時,,所以

    當(dāng)時,,,所以;

    當(dāng)時,,,所以時;

    當(dāng)時,,,所以.    …………  4分

    (II)解:

    .                        …………  8分

    (III)證明:,

    所以,

    .                       …………  9分

    當(dāng)時,

    ,

                                             …………  11分

    同時,

    .                                    …………  13分

    綜上,當(dāng)時,.                     …………  14分

     


    同步練習(xí)冊答案