(2)=a, 在第三象限.則點P'在第一象限, (4)連接對角線互相垂直且相等的四邊形各邊中點的四邊形是正方形, (5)兩邊及第三邊上的中線對應相等的兩個三角形全等. 其中正確命題的個數是 A 2個 B 3個 C 4個 D 5個 查看更多

 

題目列表(包括答案和解析)

如圖(1),在平面直角坐標系中,矩形ABCOB點坐標為(4,3),拋物線yx2bxc經過矩形ABCO的頂點B、C,DBC的中點,直線ADy軸交于E點,與拋物線yx2bxc交于第四象限的F點.

(1)求該拋物線解析式與F點坐標;

(2)如圖,動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;

同時,動點M從點A出發(fā),沿線段AE以每秒個單位長度的速度向終點E運動.過

PPHOA,垂足為H,連接MP,MH.設點P的運動時間為t秒.

①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.

②若△PMH是等腰三角形,請直接寫出此時t的值.

 

查看答案和解析>>

如圖(1),在平面直角坐標系中,矩形ABCO,B點坐標為(4,3),拋物線yx2bxc經過矩形ABCO的頂點BC,DBC的中點,直線ADy軸交于E點,與拋物線yx2bxc交于第四象限的F點.

(1)求該拋物線解析式與F點坐標;
(2)如圖,動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;
同時,動點M從點A出發(fā),沿線段AE以每秒個單位長度的速度向終點E運動.過
PPHOA,垂足為H,連接MP,MH.設點P的運動時間為t秒.
①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,求出此時t的值.

查看答案和解析>>

如圖(1),在平面直角坐標系中,矩形ABCO,B點坐標為(4,3),拋物線yx2bxc經過矩形ABCO的頂點B、C,DBC的中點,直線ADy軸交于E點,與拋物線yx2bxc交于第四象限的F點.

(1)求該拋物線解析式與F點坐標;

(2)如圖,動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;

同時,動點M從點A出發(fā),沿線段AE以每秒個單位長度的速度向終點E運動.過

PPHOA,垂足為H,連接MP,MH.設點P的運動時間為t秒.

①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.

②若△PMH是等腰三角形,求出此時t的值.

 

查看答案和解析>>

如圖(1),在平面直角坐標系中,矩形ABCO,B點坐標為(4,3),拋物線yx2bxc經過矩形ABCO的頂點B、C,DBC的中點,直線ADy軸交于E點,與拋物線yx2bxc交于第四象限的F點.

(1)求該拋物線解析式與F點坐標;
(2)如圖,動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;
同時,動點M從點A出發(fā),沿線段AE以每秒個單位長度的速度向終點E運動.過
PPHOA,垂足為H,連接MP,MH.設點P的運動時間為t秒.
①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,求出此時t的值.

查看答案和解析>>

(本題滿分9分)如圖,第一象限內半徑為2的⊙C與y軸相切于點A,作直徑AD,過點D作⊙C的切線lx軸子點B,P為直線l上一動點,已知直線PA的解析式為:y=kx+3。

    (1)設點P的縱坐標為p,寫出p隨k變化的函數關系式。

    (2)設⊙C與PA交于點M,與AB交于點N,則不論動點P處于直線l上(除點B以外)的什么位置時,都有△AMN∽△ABP。請你對于點P處于圖中位置時的兩三角形相似給予證明;

    (3)是否存在使△AMN的面積等于的k值?若存在,請求出符合的k值;若不存在,請說明理由。

 

 

查看答案和解析>>


同步練習冊答案